带可变预调器的变换原始-双重方法

Long Chen, Ruchi Guo, Jingrong Wei
{"title":"带可变预调器的变换原始-双重方法","authors":"Long Chen, Ruchi Guo, Jingrong Wei","doi":"arxiv-2312.12355","DOIUrl":null,"url":null,"abstract":"This paper introduces a novel Transformed Primal-Dual with\nvariable-metric/preconditioner (TPDv) algorithm, designed to efficiently solve\naffine constrained optimization problems common in nonlinear partial\ndifferential equations (PDEs). Diverging from traditional methods, TPDv\niteratively updates time-evolving preconditioning operators, enhancing\nadaptability. The algorithm is derived and analyzed, demonstrating global\nlinear convergence rates under mild assumptions. Numerical experiments on\nchallenging nonlinear PDEs, including the Darcy-Forchheimer model and a\nnonlinear electromagnetic problem, showcase the algorithm's superiority over\nexisting methods in terms of iteration numbers and computational efficiency.\nThe paper concludes with a comprehensive convergence analysis.","PeriodicalId":501061,"journal":{"name":"arXiv - CS - Numerical Analysis","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transformed Primal-Dual Methods with Variable-Preconditioners\",\"authors\":\"Long Chen, Ruchi Guo, Jingrong Wei\",\"doi\":\"arxiv-2312.12355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a novel Transformed Primal-Dual with\\nvariable-metric/preconditioner (TPDv) algorithm, designed to efficiently solve\\naffine constrained optimization problems common in nonlinear partial\\ndifferential equations (PDEs). Diverging from traditional methods, TPDv\\niteratively updates time-evolving preconditioning operators, enhancing\\nadaptability. The algorithm is derived and analyzed, demonstrating global\\nlinear convergence rates under mild assumptions. Numerical experiments on\\nchallenging nonlinear PDEs, including the Darcy-Forchheimer model and a\\nnonlinear electromagnetic problem, showcase the algorithm's superiority over\\nexisting methods in terms of iteration numbers and computational efficiency.\\nThe paper concludes with a comprehensive convergence analysis.\",\"PeriodicalId\":501061,\"journal\":{\"name\":\"arXiv - CS - Numerical Analysis\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2312.12355\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.12355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种新颖的带可变度量/预处理(TPDv)的变换原始双算法,旨在高效解决非线性偏微分方程(PDEs)中常见的有限元约束优化问题。与传统方法不同的是,TPD 不断更新时间演化预处理算子,增强了适应性。对算法进行了推导和分析,证明了在温和假设条件下的球线性收敛率。在包括达西-福克海默模型和非线性电磁问题在内的挑战性非线性 PDEs 上进行的数值实验表明,该算法在迭代次数和计算效率方面优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transformed Primal-Dual Methods with Variable-Preconditioners
This paper introduces a novel Transformed Primal-Dual with variable-metric/preconditioner (TPDv) algorithm, designed to efficiently solve affine constrained optimization problems common in nonlinear partial differential equations (PDEs). Diverging from traditional methods, TPDv iteratively updates time-evolving preconditioning operators, enhancing adaptability. The algorithm is derived and analyzed, demonstrating global linear convergence rates under mild assumptions. Numerical experiments on challenging nonlinear PDEs, including the Darcy-Forchheimer model and a nonlinear electromagnetic problem, showcase the algorithm's superiority over existing methods in terms of iteration numbers and computational efficiency. The paper concludes with a comprehensive convergence analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信