Akshansh Mishra, Vijaykumar S. Jatti, Eyob Messele Sefene, Ashwini V. Jatti, Addisalem Desalegn Sisay, Nitin K. Khedkar, Sachin Salunkhe, Marek Pagáč, Emad S. Abouel Nasr
{"title":"用于估算熔融沉积模型聚乳酸试样极限拉伸强度的机器学习辅助模式识别算法","authors":"Akshansh Mishra, Vijaykumar S. Jatti, Eyob Messele Sefene, Ashwini V. Jatti, Addisalem Desalegn Sisay, Nitin K. Khedkar, Sachin Salunkhe, Marek Pagáč, Emad S. Abouel Nasr","doi":"10.1080/10667857.2023.2295089","DOIUrl":null,"url":null,"abstract":"In this study, we investigate the application of supervised machine learning algorithms for estimating the Ultimate Tensile Strength (UTS) of Polylactic Acid (PLA) specimens fabricated using the Fu...","PeriodicalId":18270,"journal":{"name":"Materials Technology","volume":"10 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning-assisted pattern recognition algorithms for estimating ultimate tensile strength in fused deposition modelled polylactic acid specimens\",\"authors\":\"Akshansh Mishra, Vijaykumar S. Jatti, Eyob Messele Sefene, Ashwini V. Jatti, Addisalem Desalegn Sisay, Nitin K. Khedkar, Sachin Salunkhe, Marek Pagáč, Emad S. Abouel Nasr\",\"doi\":\"10.1080/10667857.2023.2295089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we investigate the application of supervised machine learning algorithms for estimating the Ultimate Tensile Strength (UTS) of Polylactic Acid (PLA) specimens fabricated using the Fu...\",\"PeriodicalId\":18270,\"journal\":{\"name\":\"Materials Technology\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/10667857.2023.2295089\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/10667857.2023.2295089","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Machine learning-assisted pattern recognition algorithms for estimating ultimate tensile strength in fused deposition modelled polylactic acid specimens
In this study, we investigate the application of supervised machine learning algorithms for estimating the Ultimate Tensile Strength (UTS) of Polylactic Acid (PLA) specimens fabricated using the Fu...
期刊介绍:
Materials Technology: Advanced Performance Materials provides an international medium for the communication of progress in the field of functional materials (advanced materials in which composition, structure and surface are functionalised to confer specific, applications-oriented properties). The focus is on materials for biomedical, electronic, photonic and energy applications. Contributions should address the physical, chemical, or engineering sciences that underpin the design and application of these materials. The scientific and engineering aspects may include processing and structural characterisation from the micro- to nanoscale to achieve specific functionality.