长记忆过程的尾部指数估算

IF 0.9 4区 数学 Q3 STATISTICS & PROBABILITY
Metrika Pub Date : 2023-12-20 DOI:10.1007/s00184-023-00938-w
Xiao Wang, Lihong Wang
{"title":"长记忆过程的尾部指数估算","authors":"Xiao Wang, Lihong Wang","doi":"10.1007/s00184-023-00938-w","DOIUrl":null,"url":null,"abstract":"<p>This paper provides a least squares regression estimation of the tail index for long memory processes where the innovations are <span>\\(\\alpha \\)</span>-stable random sequences. The estimate is based on the property of the characteristic function of the process near the origin. The asymptotics of the estimator are obtained by choosing suitable regression samples with the help of the properties of the <span>\\(\\alpha \\)</span>-stable distribution. The numerical simulation and an empirical analysis of financial market data are conducted to assess the finite sample performance of the proposed estimator.</p>","PeriodicalId":49821,"journal":{"name":"Metrika","volume":"31 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A tail index estimation for long memory processes\",\"authors\":\"Xiao Wang, Lihong Wang\",\"doi\":\"10.1007/s00184-023-00938-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper provides a least squares regression estimation of the tail index for long memory processes where the innovations are <span>\\\\(\\\\alpha \\\\)</span>-stable random sequences. The estimate is based on the property of the characteristic function of the process near the origin. The asymptotics of the estimator are obtained by choosing suitable regression samples with the help of the properties of the <span>\\\\(\\\\alpha \\\\)</span>-stable distribution. The numerical simulation and an empirical analysis of financial market data are conducted to assess the finite sample performance of the proposed estimator.</p>\",\"PeriodicalId\":49821,\"journal\":{\"name\":\"Metrika\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metrika\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00184-023-00938-w\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metrika","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00184-023-00938-w","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

本文对创新为 \(α \)-稳定随机序列的长记忆过程的尾部指数进行了最小二乘回归估计。该估计基于原点附近过程特征函数的性质。在 \(\α \)-稳定分布性质的帮助下,通过选择合适的回归样本得到了估计器的渐近线。对金融市场数据进行了数值模拟和实证分析,以评估所提出的估计器的有限样本性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A tail index estimation for long memory processes

A tail index estimation for long memory processes

This paper provides a least squares regression estimation of the tail index for long memory processes where the innovations are \(\alpha \)-stable random sequences. The estimate is based on the property of the characteristic function of the process near the origin. The asymptotics of the estimator are obtained by choosing suitable regression samples with the help of the properties of the \(\alpha \)-stable distribution. The numerical simulation and an empirical analysis of financial market data are conducted to assess the finite sample performance of the proposed estimator.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Metrika
Metrika 数学-统计学与概率论
CiteScore
1.50
自引率
14.30%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Metrika is an international journal for theoretical and applied statistics. Metrika publishes original research papers in the field of mathematical statistics and statistical methods. Great importance is attached to new developments in theoretical statistics, statistical modeling and to actual innovative applicability of the proposed statistical methods and results. Topics of interest include, without being limited to, multivariate analysis, high dimensional statistics and nonparametric statistics; categorical data analysis and latent variable models; reliability, lifetime data analysis and statistics in engineering sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信