{"title":"细菌细胞表面的 Split-GFP 互补,用于无抗体标记和量化异源蛋白质展示","authors":"David Gercke, Florian Lenz, Joachim Jose","doi":"10.1016/j.enzmictec.2023.110391","DOIUrl":null,"url":null,"abstract":"<div><p>The split-GFP system is a versatile tool with numerous applications, but it has been underutilized for the labeling of heterologous surface-displayed proteins. By inserting the 16 amino acid sequence of the GFP11-tag between a protein of interest and an autotransporter protein, it is possible to present a protein at the outer membrane of gram-negative bacteria and to fluorescently label it by complementation with externally added GFP1–10. The labeled cells could be clearly discerned from cells without the protein of interest using flow cytometry and the insertion of the GFP11-tag caused no significant alteration of the catalytic activity for the tested model enzyme CsBglA. Furthermore, the amount of the protein of interest on the cells could be quantified by comparing the green fluorescence resulting from the complementation to that of standards with known concentrations. This allows a precise characterization of whole-cell biocatalysts, which is difficult with existing methods. The split-GFP complementation approach was shown to be specific, in a similar manner as commercial antibodies. It is cost-efficient, minimizes the possibility of adverse effects on protein expression or solubility, and can be performed at high throughput.</p></div>","PeriodicalId":11770,"journal":{"name":"Enzyme and Microbial Technology","volume":"174 ","pages":"Article 110391"},"PeriodicalIF":3.4000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0141022923001990/pdfft?md5=2ce92ee2b31db9ab8cd904db7f8b908d&pid=1-s2.0-S0141022923001990-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Split-GFP complementation at the bacterial cell surface for antibody-free labeling and quantification of heterologous protein display\",\"authors\":\"David Gercke, Florian Lenz, Joachim Jose\",\"doi\":\"10.1016/j.enzmictec.2023.110391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The split-GFP system is a versatile tool with numerous applications, but it has been underutilized for the labeling of heterologous surface-displayed proteins. By inserting the 16 amino acid sequence of the GFP11-tag between a protein of interest and an autotransporter protein, it is possible to present a protein at the outer membrane of gram-negative bacteria and to fluorescently label it by complementation with externally added GFP1–10. The labeled cells could be clearly discerned from cells without the protein of interest using flow cytometry and the insertion of the GFP11-tag caused no significant alteration of the catalytic activity for the tested model enzyme CsBglA. Furthermore, the amount of the protein of interest on the cells could be quantified by comparing the green fluorescence resulting from the complementation to that of standards with known concentrations. This allows a precise characterization of whole-cell biocatalysts, which is difficult with existing methods. The split-GFP complementation approach was shown to be specific, in a similar manner as commercial antibodies. It is cost-efficient, minimizes the possibility of adverse effects on protein expression or solubility, and can be performed at high throughput.</p></div>\",\"PeriodicalId\":11770,\"journal\":{\"name\":\"Enzyme and Microbial Technology\",\"volume\":\"174 \",\"pages\":\"Article 110391\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0141022923001990/pdfft?md5=2ce92ee2b31db9ab8cd904db7f8b908d&pid=1-s2.0-S0141022923001990-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Enzyme and Microbial Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141022923001990\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enzyme and Microbial Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141022923001990","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Split-GFP complementation at the bacterial cell surface for antibody-free labeling and quantification of heterologous protein display
The split-GFP system is a versatile tool with numerous applications, but it has been underutilized for the labeling of heterologous surface-displayed proteins. By inserting the 16 amino acid sequence of the GFP11-tag between a protein of interest and an autotransporter protein, it is possible to present a protein at the outer membrane of gram-negative bacteria and to fluorescently label it by complementation with externally added GFP1–10. The labeled cells could be clearly discerned from cells without the protein of interest using flow cytometry and the insertion of the GFP11-tag caused no significant alteration of the catalytic activity for the tested model enzyme CsBglA. Furthermore, the amount of the protein of interest on the cells could be quantified by comparing the green fluorescence resulting from the complementation to that of standards with known concentrations. This allows a precise characterization of whole-cell biocatalysts, which is difficult with existing methods. The split-GFP complementation approach was shown to be specific, in a similar manner as commercial antibodies. It is cost-efficient, minimizes the possibility of adverse effects on protein expression or solubility, and can be performed at high throughput.
期刊介绍:
Enzyme and Microbial Technology is an international, peer-reviewed journal publishing original research and reviews, of biotechnological significance and novelty, on basic and applied aspects of the science and technology of processes involving the use of enzymes, micro-organisms, animal cells and plant cells.
We especially encourage submissions on:
Biocatalysis and the use of Directed Evolution in Synthetic Biology and Biotechnology
Biotechnological Production of New Bioactive Molecules, Biomaterials, Biopharmaceuticals, and Biofuels
New Imaging Techniques and Biosensors, especially as applicable to Healthcare and Systems Biology
New Biotechnological Approaches in Genomics, Proteomics and Metabolomics
Metabolic Engineering, Biomolecular Engineering and Nanobiotechnology
Manuscripts which report isolation, purification, immobilization or utilization of organisms or enzymes which are already well-described in the literature are not suitable for publication in EMT, unless their primary purpose is to report significant new findings or approaches which are of broad biotechnological importance. Similarly, manuscripts which report optimization studies on well-established processes are inappropriate. EMT does not accept papers dealing with mathematical modeling unless they report significant, new experimental data.