{"title":"某些黎曼曼体上与分数拉普拉斯相关的两个算子族的大时间行为","authors":"Effie Papageorgiou","doi":"10.1007/s11118-023-10109-1","DOIUrl":null,"url":null,"abstract":"<p>This note is concerned with two families of operators related to the fractional Laplacian, the first arising from the Caffarelli-Silvestre extension problem and the second from the fractional heat equation. They both include the Poisson semigroup. We show that on a complete, connected, and non-compact Riemannian manifold of non-negative Ricci curvature, in both cases, the solution with <span>\\(L^1\\)</span> initial data behaves asymptotically as the mass times the fundamental solution. Similar long-time convergence results remain valid on more general manifolds satisfying the Li-Yau two-sided estimate of the heat kernel. The situation changes drastically on hyperbolic space, and more generally on rank one non-compact symmetric spaces: we show that for the Poisson semigroup, the convergence to the Poisson kernel fails -but remains true under the additional assumption of radial initial data.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large-Time Behavior of Two Families of Operators Related to the Fractional Laplacian on Certain Riemannian Manifolds\",\"authors\":\"Effie Papageorgiou\",\"doi\":\"10.1007/s11118-023-10109-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This note is concerned with two families of operators related to the fractional Laplacian, the first arising from the Caffarelli-Silvestre extension problem and the second from the fractional heat equation. They both include the Poisson semigroup. We show that on a complete, connected, and non-compact Riemannian manifold of non-negative Ricci curvature, in both cases, the solution with <span>\\\\(L^1\\\\)</span> initial data behaves asymptotically as the mass times the fundamental solution. Similar long-time convergence results remain valid on more general manifolds satisfying the Li-Yau two-sided estimate of the heat kernel. The situation changes drastically on hyperbolic space, and more generally on rank one non-compact symmetric spaces: we show that for the Poisson semigroup, the convergence to the Poisson kernel fails -but remains true under the additional assumption of radial initial data.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11118-023-10109-1\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11118-023-10109-1","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Large-Time Behavior of Two Families of Operators Related to the Fractional Laplacian on Certain Riemannian Manifolds
This note is concerned with two families of operators related to the fractional Laplacian, the first arising from the Caffarelli-Silvestre extension problem and the second from the fractional heat equation. They both include the Poisson semigroup. We show that on a complete, connected, and non-compact Riemannian manifold of non-negative Ricci curvature, in both cases, the solution with \(L^1\) initial data behaves asymptotically as the mass times the fundamental solution. Similar long-time convergence results remain valid on more general manifolds satisfying the Li-Yau two-sided estimate of the heat kernel. The situation changes drastically on hyperbolic space, and more generally on rank one non-compact symmetric spaces: we show that for the Poisson semigroup, the convergence to the Poisson kernel fails -but remains true under the additional assumption of radial initial data.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.