某些黎曼曼体上与分数拉普拉斯相关的两个算子族的大时间行为

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Effie Papageorgiou
{"title":"某些黎曼曼体上与分数拉普拉斯相关的两个算子族的大时间行为","authors":"Effie Papageorgiou","doi":"10.1007/s11118-023-10109-1","DOIUrl":null,"url":null,"abstract":"<p>This note is concerned with two families of operators related to the fractional Laplacian, the first arising from the Caffarelli-Silvestre extension problem and the second from the fractional heat equation. They both include the Poisson semigroup. We show that on a complete, connected, and non-compact Riemannian manifold of non-negative Ricci curvature, in both cases, the solution with <span>\\(L^1\\)</span> initial data behaves asymptotically as the mass times the fundamental solution. Similar long-time convergence results remain valid on more general manifolds satisfying the Li-Yau two-sided estimate of the heat kernel. The situation changes drastically on hyperbolic space, and more generally on rank one non-compact symmetric spaces: we show that for the Poisson semigroup, the convergence to the Poisson kernel fails -but remains true under the additional assumption of radial initial data.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large-Time Behavior of Two Families of Operators Related to the Fractional Laplacian on Certain Riemannian Manifolds\",\"authors\":\"Effie Papageorgiou\",\"doi\":\"10.1007/s11118-023-10109-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This note is concerned with two families of operators related to the fractional Laplacian, the first arising from the Caffarelli-Silvestre extension problem and the second from the fractional heat equation. They both include the Poisson semigroup. We show that on a complete, connected, and non-compact Riemannian manifold of non-negative Ricci curvature, in both cases, the solution with <span>\\\\(L^1\\\\)</span> initial data behaves asymptotically as the mass times the fundamental solution. Similar long-time convergence results remain valid on more general manifolds satisfying the Li-Yau two-sided estimate of the heat kernel. The situation changes drastically on hyperbolic space, and more generally on rank one non-compact symmetric spaces: we show that for the Poisson semigroup, the convergence to the Poisson kernel fails -but remains true under the additional assumption of radial initial data.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11118-023-10109-1\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11118-023-10109-1","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本说明涉及与分数拉普拉奇相关的两个算子族,第一个算子族产生于 Caffarelli-Silvestre 扩展问题,第二个算子族产生于分数热方程。它们都包含泊松半群。我们证明,在一个完整、连通、非紧凑的黎曼流形上,在这两种情况下,具有 \(L^1\) 初始数据的解近似表现为基本解的质量倍。类似的长时间收敛结果在满足热核的李-尤双面估计的更一般流形上仍然有效。在双曲空间以及更一般的秩一非紧凑对称空间上,情况发生了急剧变化:我们证明,对于泊松半群,向泊松核的收敛失败了--但在径向初始数据的额外假设下仍然有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large-Time Behavior of Two Families of Operators Related to the Fractional Laplacian on Certain Riemannian Manifolds

This note is concerned with two families of operators related to the fractional Laplacian, the first arising from the Caffarelli-Silvestre extension problem and the second from the fractional heat equation. They both include the Poisson semigroup. We show that on a complete, connected, and non-compact Riemannian manifold of non-negative Ricci curvature, in both cases, the solution with \(L^1\) initial data behaves asymptotically as the mass times the fundamental solution. Similar long-time convergence results remain valid on more general manifolds satisfying the Li-Yau two-sided estimate of the heat kernel. The situation changes drastically on hyperbolic space, and more generally on rank one non-compact symmetric spaces: we show that for the Poisson semigroup, the convergence to the Poisson kernel fails -but remains true under the additional assumption of radial initial data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信