利用机器学习模型从实验室高光谱图像预测土壤中的有机碳和氮含量

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Manuela Ortega Monsalve, Mario Cerón-Muñoz, Luis Galeano-Vasco, Marisol Medina-Sierra
{"title":"利用机器学习模型从实验室高光谱图像预测土壤中的有机碳和氮含量","authors":"Manuela Ortega Monsalve, Mario Cerón-Muñoz, Luis Galeano-Vasco, Marisol Medina-Sierra","doi":"10.1155/2023/4389885","DOIUrl":null,"url":null,"abstract":"Organic carbon and total nitrogen are essential nutrients for plant growth. The presence of these nutrients at acceptable levels can create an optimal environment for the development of crops of interest. The application of spectroscopic techniques and the use of machine learning algorithms have made it possible to calibrate models capable of predicting the number of elements present in the soil. One of these techniques is hyperspectral imaging, which captures portions of the electromagnetic spectrum where the materials present in the soil can be differentiated due to the vibrations of chemical bonds. The objective of this research is to use statistical models to predict OC and N in soils from hyperspectral images. Transformations were applied to spectral and chemical data and the models used were Random Forest (RF) and Support Vector Machine (SVM). To select the best model, the values of the coefficient of determination (<span><svg height=\"11.7978pt\" style=\"vertical-align:-0.2063999pt\" version=\"1.1\" viewbox=\"-0.0498162 -11.5914 13.2276 11.7978\" width=\"13.2276pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,8.151,-5.741)\"></path></g></svg>),</span> root mean square error of prediction (RMSEP), and the ratio of performance to deviation (RPD) were considered. For OC, the values found for the RF model were an <svg height=\"11.7978pt\" style=\"vertical-align:-0.2063999pt\" version=\"1.1\" viewbox=\"-0.0498162 -11.5914 13.2276 11.7978\" width=\"13.2276pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-83\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,8.151,-5.741)\"><use xlink:href=\"#g50-51\"></use></g></svg> of 0.87, an RMSEP of 0.10, and an RPD of 6.74; the SVM model presented an <svg height=\"11.7978pt\" style=\"vertical-align:-0.2063999pt\" version=\"1.1\" viewbox=\"-0.0498162 -11.5914 13.2276 11.7978\" width=\"13.2276pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-83\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,8.151,-5.741)\"><use xlink:href=\"#g50-51\"></use></g></svg> of 0.92, an RMSEP of 0.20, and an RPD of 3.56. For the variable N, the values found for the RF model were an <svg height=\"11.7978pt\" style=\"vertical-align:-0.2063999pt\" version=\"1.1\" viewbox=\"-0.0498162 -11.5914 13.2276 11.7978\" width=\"13.2276pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-83\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,8.151,-5.741)\"><use xlink:href=\"#g50-51\"></use></g></svg> of 0.79, an RMSEP of 0.03, and an RPD of 5.44; for the SVM model, they were an <svg height=\"11.7978pt\" style=\"vertical-align:-0.2063999pt\" version=\"1.1\" viewbox=\"-0.0498162 -11.5914 13.2276 11.7978\" width=\"13.2276pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-83\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,8.151,-5.741)\"><use xlink:href=\"#g50-51\"></use></g></svg> of 0.87, an RMSEP of 0.08, and an RPD of 2.76. The RF model showed a better fit for both variables. The SVM model also produced acceptable results. The results show that machine learning models are a good alternative for analysing soil-related variables.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Use of Machine Learning Models for Prediction of Organic Carbon and Nitrogen in Soil from Hyperspectral Imagery in Laboratory\",\"authors\":\"Manuela Ortega Monsalve, Mario Cerón-Muñoz, Luis Galeano-Vasco, Marisol Medina-Sierra\",\"doi\":\"10.1155/2023/4389885\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Organic carbon and total nitrogen are essential nutrients for plant growth. The presence of these nutrients at acceptable levels can create an optimal environment for the development of crops of interest. The application of spectroscopic techniques and the use of machine learning algorithms have made it possible to calibrate models capable of predicting the number of elements present in the soil. One of these techniques is hyperspectral imaging, which captures portions of the electromagnetic spectrum where the materials present in the soil can be differentiated due to the vibrations of chemical bonds. The objective of this research is to use statistical models to predict OC and N in soils from hyperspectral images. Transformations were applied to spectral and chemical data and the models used were Random Forest (RF) and Support Vector Machine (SVM). To select the best model, the values of the coefficient of determination (<span><svg height=\\\"11.7978pt\\\" style=\\\"vertical-align:-0.2063999pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -11.5914 13.2276 11.7978\\\" width=\\\"13.2276pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g><g transform=\\\"matrix(.0091,0,0,-0.0091,8.151,-5.741)\\\"></path></g></svg>),</span> root mean square error of prediction (RMSEP), and the ratio of performance to deviation (RPD) were considered. For OC, the values found for the RF model were an <svg height=\\\"11.7978pt\\\" style=\\\"vertical-align:-0.2063999pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -11.5914 13.2276 11.7978\\\" width=\\\"13.2276pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-83\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,8.151,-5.741)\\\"><use xlink:href=\\\"#g50-51\\\"></use></g></svg> of 0.87, an RMSEP of 0.10, and an RPD of 6.74; the SVM model presented an <svg height=\\\"11.7978pt\\\" style=\\\"vertical-align:-0.2063999pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -11.5914 13.2276 11.7978\\\" width=\\\"13.2276pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-83\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,8.151,-5.741)\\\"><use xlink:href=\\\"#g50-51\\\"></use></g></svg> of 0.92, an RMSEP of 0.20, and an RPD of 3.56. For the variable N, the values found for the RF model were an <svg height=\\\"11.7978pt\\\" style=\\\"vertical-align:-0.2063999pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -11.5914 13.2276 11.7978\\\" width=\\\"13.2276pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-83\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,8.151,-5.741)\\\"><use xlink:href=\\\"#g50-51\\\"></use></g></svg> of 0.79, an RMSEP of 0.03, and an RPD of 5.44; for the SVM model, they were an <svg height=\\\"11.7978pt\\\" style=\\\"vertical-align:-0.2063999pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -11.5914 13.2276 11.7978\\\" width=\\\"13.2276pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-83\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,8.151,-5.741)\\\"><use xlink:href=\\\"#g50-51\\\"></use></g></svg> of 0.87, an RMSEP of 0.08, and an RPD of 2.76. The RF model showed a better fit for both variables. The SVM model also produced acceptable results. The results show that machine learning models are a good alternative for analysing soil-related variables.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/4389885\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1155/2023/4389885","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

有机碳和总氮是植物生长所必需的养分。如果这些营养元素的含量达到可接受的水平,就能为相关作物的生长创造最佳环境。光谱技术的应用和机器学习算法的使用使得校准能够预测土壤中元素数量的模型成为可能。其中一种技术是高光谱成像技术,它可以捕捉电磁波谱中的一部分,通过化学键的振动来区分土壤中存在的物质。这项研究的目的是利用统计模型从高光谱图像中预测土壤中的 OC 和 N。对光谱和化学数据进行了转换,使用的模型是随机森林(RF)和支持向量机(SVM)。为了选择最佳模型,考虑了判定系数()、预测均方根误差(RMSEP)和性能与偏差比(RPD)的值。就 OC 而言,RF 模型的值为 0.87,RMSEP 为 0.10,RPD 为 6.74;SVM 模型的值为 0.92,RMSEP 为 0.20,RPD 为 3.56。对于变量 N,RF 模型的拟合值为 0.79,RMSEP 为 0.03,RPD 为 5.44;SVM 模型的拟合值为 0.87,RMSEP 为 0.08,RPD 为 2.76。RF 模型对两个变量的拟合效果更好。SVM 模型的结果也可以接受。结果表明,机器学习模型是分析土壤相关变量的良好选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Use of Machine Learning Models for Prediction of Organic Carbon and Nitrogen in Soil from Hyperspectral Imagery in Laboratory
Organic carbon and total nitrogen are essential nutrients for plant growth. The presence of these nutrients at acceptable levels can create an optimal environment for the development of crops of interest. The application of spectroscopic techniques and the use of machine learning algorithms have made it possible to calibrate models capable of predicting the number of elements present in the soil. One of these techniques is hyperspectral imaging, which captures portions of the electromagnetic spectrum where the materials present in the soil can be differentiated due to the vibrations of chemical bonds. The objective of this research is to use statistical models to predict OC and N in soils from hyperspectral images. Transformations were applied to spectral and chemical data and the models used were Random Forest (RF) and Support Vector Machine (SVM). To select the best model, the values of the coefficient of determination (), root mean square error of prediction (RMSEP), and the ratio of performance to deviation (RPD) were considered. For OC, the values found for the RF model were an of 0.87, an RMSEP of 0.10, and an RPD of 6.74; the SVM model presented an of 0.92, an RMSEP of 0.20, and an RPD of 3.56. For the variable N, the values found for the RF model were an of 0.79, an RMSEP of 0.03, and an RPD of 5.44; for the SVM model, they were an of 0.87, an RMSEP of 0.08, and an RPD of 2.76. The RF model showed a better fit for both variables. The SVM model also produced acceptable results. The results show that machine learning models are a good alternative for analysing soil-related variables.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信