在短间隔内具有平方和除数集合中频率的三角多项式

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
{"title":"在短间隔内具有平方和除数集合中频率的三角多项式","authors":"","doi":"10.1007/s00041-023-10064-w","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Let <span> <span>\\(\\gamma _0=\\frac{\\sqrt{5}-1}{2}=0.618\\ldots \\)</span> </span>. We prove that, for any <span> <span>\\(\\varepsilon &gt;0\\)</span> </span> and any trigonometric polynomial <em>f</em> with frequencies in the set <span> <span>\\(\\{n^2: N \\leqslant n\\leqslant N+N^{\\gamma _0-\\varepsilon }\\}\\)</span> </span>, the inequality <span> <span>$$\\begin{aligned} \\Vert f\\Vert _4 \\ll \\varepsilon ^{-1/4}\\Vert f\\Vert _2 \\end{aligned}$$</span> </span>holds, which makes a progress on a conjecture of Cilleruelo and Córdoba. We also present a connection between this conjecture and the conjecture of Ruzsa which asserts that, for any <span> <span>\\(\\varepsilon &gt;0\\)</span> </span>, there is <span> <span>\\(C(\\varepsilon )&gt;0\\)</span> </span> such that each positive integer <em>N</em> has at most <span> <span>\\(C(\\varepsilon )\\)</span> </span> divisors in the interval <span> <span>\\([N^{1/2}, N^{1/2}+N^{1/2-\\varepsilon }]\\)</span> </span>.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trigonometric Polynomials with Frequencies in the Set of Squares and Divisors in a Short Interval\",\"authors\":\"\",\"doi\":\"10.1007/s00041-023-10064-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>Let <span> <span>\\\\(\\\\gamma _0=\\\\frac{\\\\sqrt{5}-1}{2}=0.618\\\\ldots \\\\)</span> </span>. We prove that, for any <span> <span>\\\\(\\\\varepsilon &gt;0\\\\)</span> </span> and any trigonometric polynomial <em>f</em> with frequencies in the set <span> <span>\\\\(\\\\{n^2: N \\\\leqslant n\\\\leqslant N+N^{\\\\gamma _0-\\\\varepsilon }\\\\}\\\\)</span> </span>, the inequality <span> <span>$$\\\\begin{aligned} \\\\Vert f\\\\Vert _4 \\\\ll \\\\varepsilon ^{-1/4}\\\\Vert f\\\\Vert _2 \\\\end{aligned}$$</span> </span>holds, which makes a progress on a conjecture of Cilleruelo and Córdoba. We also present a connection between this conjecture and the conjecture of Ruzsa which asserts that, for any <span> <span>\\\\(\\\\varepsilon &gt;0\\\\)</span> </span>, there is <span> <span>\\\\(C(\\\\varepsilon )&gt;0\\\\)</span> </span> such that each positive integer <em>N</em> has at most <span> <span>\\\\(C(\\\\varepsilon )\\\\)</span> </span> divisors in the interval <span> <span>\\\\([N^{1/2}, N^{1/2}+N^{1/2-\\\\varepsilon }]\\\\)</span> </span>.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00041-023-10064-w\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00041-023-10064-w","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

Abstract Let \(\gamma _0=\frac\{sqrt{5}-1}{2}=0.618\ldots \) .我们证明,对于任意的(varepsilon >0\)和任意的三角多项式f,其频率在集合({n^2: N +N^{gamma _0-\varepsilon }\} )中,不等式为$$\begin{aligned}。\Vert f\Vert _4 \ll \varepsilon ^{-1/4}\Vert f\Vert _2 \end{aligned}$$成立,这在 Cilleruelo 和 Córdoba 的猜想上取得了进展。我们还提出了这个猜想与鲁兹萨猜想之间的联系,鲁兹萨猜想断言,对于任意 \(\varepsilon >0\), 有 \(C(\varepsilon )>;0),使得每个正整数 N 在区间 \([N^{1/2},N^{1/2}+N^{1/2-\varepsilon }]\)中最多有 \(C(\varepsilon)\)个除数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Trigonometric Polynomials with Frequencies in the Set of Squares and Divisors in a Short Interval

Abstract

Let \(\gamma _0=\frac{\sqrt{5}-1}{2}=0.618\ldots \) . We prove that, for any \(\varepsilon >0\) and any trigonometric polynomial f with frequencies in the set \(\{n^2: N \leqslant n\leqslant N+N^{\gamma _0-\varepsilon }\}\) , the inequality $$\begin{aligned} \Vert f\Vert _4 \ll \varepsilon ^{-1/4}\Vert f\Vert _2 \end{aligned}$$ holds, which makes a progress on a conjecture of Cilleruelo and Córdoba. We also present a connection between this conjecture and the conjecture of Ruzsa which asserts that, for any \(\varepsilon >0\) , there is \(C(\varepsilon )>0\) such that each positive integer N has at most \(C(\varepsilon )\) divisors in the interval \([N^{1/2}, N^{1/2}+N^{1/2-\varepsilon }]\) .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信