{"title":"重新审视用于增强分数积分数值逼近的扩散表示法","authors":"Renu Chaudhary, Kai Diethelm","doi":"arxiv-2312.11590","DOIUrl":null,"url":null,"abstract":"This study reexamines diffusive representations for fractional integrals with\nthe goal of pioneering new variants of such representations. These variants aim\nto offer highly efficient numerical algorithms for the approximate computation\nof fractional integrals. The approach seamlessly aligns with established\ntechniques used in addressing problems involving integer-order operators,\ncontributing to a unified framework for numerical solutions.","PeriodicalId":501061,"journal":{"name":"arXiv - CS - Numerical Analysis","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revisiting Diffusive Representations for Enhanced Numerical Approximation of Fractional Integrals\",\"authors\":\"Renu Chaudhary, Kai Diethelm\",\"doi\":\"arxiv-2312.11590\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study reexamines diffusive representations for fractional integrals with\\nthe goal of pioneering new variants of such representations. These variants aim\\nto offer highly efficient numerical algorithms for the approximate computation\\nof fractional integrals. The approach seamlessly aligns with established\\ntechniques used in addressing problems involving integer-order operators,\\ncontributing to a unified framework for numerical solutions.\",\"PeriodicalId\":501061,\"journal\":{\"name\":\"arXiv - CS - Numerical Analysis\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2312.11590\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.11590","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Revisiting Diffusive Representations for Enhanced Numerical Approximation of Fractional Integrals
This study reexamines diffusive representations for fractional integrals with
the goal of pioneering new variants of such representations. These variants aim
to offer highly efficient numerical algorithms for the approximate computation
of fractional integrals. The approach seamlessly aligns with established
techniques used in addressing problems involving integer-order operators,
contributing to a unified framework for numerical solutions.