非线性动力学的高斯过程学习

Dongwei Ye, Mengwu Guo
{"title":"非线性动力学的高斯过程学习","authors":"Dongwei Ye, Mengwu Guo","doi":"arxiv-2312.12193","DOIUrl":null,"url":null,"abstract":"One of the pivotal tasks in scientific machine learning is to represent\nunderlying dynamical systems from time series data. Many methods for such\ndynamics learning explicitly require the derivatives of state data, which are\nnot directly available and can be approximated conventionally by finite\ndifferences. However, the discrete approximations of time derivatives may\nresult in a poor estimation when state data are scarce and/or corrupted by\nnoise, thus compromising the predictiveness of the learned dynamical models. To\novercome this technical hurdle, we propose a new method that learns nonlinear\ndynamics through a Bayesian inference of characterizing model parameters. This\nmethod leverages a Gaussian process representation of states, and constructs a\nlikelihood function using the correlation between state data and their\nderivatives, yet prevents explicit evaluations of time derivatives. Through a\nBayesian scheme, a probabilistic estimate of the model parameters is given by\nthe posterior distribution, and thus a quantification is facilitated for\nuncertainties from noisy state data and the learning process. Specifically, we\nwill discuss the applicability of the proposed method to two typical scenarios\nfor dynamical systems: parameter identification and estimation with an affine\nstructure of the system, and nonlinear parametric approximation without prior\nknowledge.","PeriodicalId":501061,"journal":{"name":"arXiv - CS - Numerical Analysis","volume":"73 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gaussian process learning of nonlinear dynamics\",\"authors\":\"Dongwei Ye, Mengwu Guo\",\"doi\":\"arxiv-2312.12193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the pivotal tasks in scientific machine learning is to represent\\nunderlying dynamical systems from time series data. Many methods for such\\ndynamics learning explicitly require the derivatives of state data, which are\\nnot directly available and can be approximated conventionally by finite\\ndifferences. However, the discrete approximations of time derivatives may\\nresult in a poor estimation when state data are scarce and/or corrupted by\\nnoise, thus compromising the predictiveness of the learned dynamical models. To\\novercome this technical hurdle, we propose a new method that learns nonlinear\\ndynamics through a Bayesian inference of characterizing model parameters. This\\nmethod leverages a Gaussian process representation of states, and constructs a\\nlikelihood function using the correlation between state data and their\\nderivatives, yet prevents explicit evaluations of time derivatives. Through a\\nBayesian scheme, a probabilistic estimate of the model parameters is given by\\nthe posterior distribution, and thus a quantification is facilitated for\\nuncertainties from noisy state data and the learning process. Specifically, we\\nwill discuss the applicability of the proposed method to two typical scenarios\\nfor dynamical systems: parameter identification and estimation with an affine\\nstructure of the system, and nonlinear parametric approximation without prior\\nknowledge.\",\"PeriodicalId\":501061,\"journal\":{\"name\":\"arXiv - CS - Numerical Analysis\",\"volume\":\"73 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2312.12193\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.12193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

科学机器学习的关键任务之一是从时间序列数据中表示潜在的动力系统。许多用于此类动态系统学习的方法都明确需要状态数据的导数,但这些导数无法直接获得,只能通过有限差分进行传统近似。然而,当状态数据稀少和/或受到噪声干扰时,时间导数的离散近似可能会导致估计结果不佳,从而影响所学动力学模型的预测性。为了克服这一技术障碍,我们提出了一种新方法,通过贝叶斯推理特征模型参数来学习非线性动力学。该方法利用状态的高斯过程表示法,并利用状态数据与其导数之间的相关性来构建似然函数,同时避免对时间导数进行显式评估。通过贝叶斯方案,后验分布给出了模型参数的概率估计值,从而有助于量化来自噪声状态数据和学习过程的不确定性。具体而言,我们将讨论所提出的方法在动态系统的两种典型应用场景中的适用性:具有系统亲缘结构的参数识别和估计,以及无先验知识的非线性参数近似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gaussian process learning of nonlinear dynamics
One of the pivotal tasks in scientific machine learning is to represent underlying dynamical systems from time series data. Many methods for such dynamics learning explicitly require the derivatives of state data, which are not directly available and can be approximated conventionally by finite differences. However, the discrete approximations of time derivatives may result in a poor estimation when state data are scarce and/or corrupted by noise, thus compromising the predictiveness of the learned dynamical models. To overcome this technical hurdle, we propose a new method that learns nonlinear dynamics through a Bayesian inference of characterizing model parameters. This method leverages a Gaussian process representation of states, and constructs a likelihood function using the correlation between state data and their derivatives, yet prevents explicit evaluations of time derivatives. Through a Bayesian scheme, a probabilistic estimate of the model parameters is given by the posterior distribution, and thus a quantification is facilitated for uncertainties from noisy state data and the learning process. Specifically, we will discuss the applicability of the proposed method to two typical scenarios for dynamical systems: parameter identification and estimation with an affine structure of the system, and nonlinear parametric approximation without prior knowledge.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信