异步乘法粗空间校正

Guillaume Gbikpi-Benissan, Frédéric Magoulès
{"title":"异步乘法粗空间校正","authors":"Guillaume Gbikpi-Benissan, Frédéric Magoulès","doi":"arxiv-2312.12053","DOIUrl":null,"url":null,"abstract":"This paper introduces the multiplicative variant of the recently proposed\nasynchronous additive coarse-space correction method. Definition of an\nasynchronous extension of multiplicative correction is not straightforward,\nhowever, our analysis allows for usual asynchronous programming approaches.\nGeneral asynchronous iterative models are explicitly devised both for shared or\nreplicated coarse problems and for centralized or distributed ones. Convergence\nconditions are derived and shown to be satisfied for M-matrices, as also done\nfor the additive case. Implementation aspects are discussed, which reveal the\nneed for non-blocking synchronization for building the successive\nright-hand-side vectors of the coarse problem. Optionally, a parameter allows\nfor applying each coarse solution a maximum number of times, which has an\nimpact on the algorithm efficiency. Numerical results on a high-speed\nhomogeneous cluster confirm the practical efficiency of the asynchronous\ntwo-level method over its synchronous counterpart, even when it is not the case\nfor the underlying one-level methods.","PeriodicalId":501061,"journal":{"name":"arXiv - CS - Numerical Analysis","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asynchronous multiplicative coarse-space correction\",\"authors\":\"Guillaume Gbikpi-Benissan, Frédéric Magoulès\",\"doi\":\"arxiv-2312.12053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces the multiplicative variant of the recently proposed\\nasynchronous additive coarse-space correction method. Definition of an\\nasynchronous extension of multiplicative correction is not straightforward,\\nhowever, our analysis allows for usual asynchronous programming approaches.\\nGeneral asynchronous iterative models are explicitly devised both for shared or\\nreplicated coarse problems and for centralized or distributed ones. Convergence\\nconditions are derived and shown to be satisfied for M-matrices, as also done\\nfor the additive case. Implementation aspects are discussed, which reveal the\\nneed for non-blocking synchronization for building the successive\\nright-hand-side vectors of the coarse problem. Optionally, a parameter allows\\nfor applying each coarse solution a maximum number of times, which has an\\nimpact on the algorithm efficiency. Numerical results on a high-speed\\nhomogeneous cluster confirm the practical efficiency of the asynchronous\\ntwo-level method over its synchronous counterpart, even when it is not the case\\nfor the underlying one-level methods.\",\"PeriodicalId\":501061,\"journal\":{\"name\":\"arXiv - CS - Numerical Analysis\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2312.12053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.12053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了最近提出的异步加法粗空间修正方法的乘法变体。对乘法修正的异步扩展的定义并不简单,然而,我们的分析允许采用通常的异步编程方法。对于共享或复制的粗糙问题,以及集中或分布式问题,都明确设计了一般的异步迭代模型。针对 M 矩阵推导出了收敛条件,并证明这些条件得到了满足,加法情况也是如此。讨论了实现方面的问题,揭示了建立粗略问题的成功右侧向量需要非阻塞同步。可选参数允许应用每个粗解的最大次数,这对算法效率有影响。在高速同构集群上的数值结果证实,异步两级方法的实际效率高于同步方法,即使底层的一级方法并非如此。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asynchronous multiplicative coarse-space correction
This paper introduces the multiplicative variant of the recently proposed asynchronous additive coarse-space correction method. Definition of an asynchronous extension of multiplicative correction is not straightforward, however, our analysis allows for usual asynchronous programming approaches. General asynchronous iterative models are explicitly devised both for shared or replicated coarse problems and for centralized or distributed ones. Convergence conditions are derived and shown to be satisfied for M-matrices, as also done for the additive case. Implementation aspects are discussed, which reveal the need for non-blocking synchronization for building the successive right-hand-side vectors of the coarse problem. Optionally, a parameter allows for applying each coarse solution a maximum number of times, which has an impact on the algorithm efficiency. Numerical results on a high-speed homogeneous cluster confirm the practical efficiency of the asynchronous two-level method over its synchronous counterpart, even when it is not the case for the underlying one-level methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信