流量函数有四个拐点情况下广义科特韦格-德弗里斯-伯格斯方程的经典和特殊不连续结构

Pub Date : 2023-12-20 DOI:10.1134/s0081543823040211
V. A. Shargatov, A. P. Chugainova, A. M. Tomasheva
{"title":"流量函数有四个拐点情况下广义科特韦格-德弗里斯-伯格斯方程的经典和特殊不连续结构","authors":"V. A. Shargatov, A. P. Chugainova, A. M. Tomasheva","doi":"10.1134/s0081543823040211","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> We study the structure of the set of traveling wave solutions for the generalized Korteweg–de Vries–Burgers equation with the flux function having four inflection points. In this case there arise two monotone structures of stable special discontinuities propagating at different velocities (such a situation has not been described earlier in the literature). Both structures of special discontinuities are linearly stable. To analyze the linear stability of the structures of classical and special discontinuities, we apply a method based on the use of the Evans function. We also propose a conjecture that establishes the admissibility of classical discontinuities in the case when there are two stable special discontinuities. </p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structures of Classical and Special Discontinuities for the Generalized Korteweg–de Vries–Burgers Equation in the Case of a Flux Function with Four Inflection Points\",\"authors\":\"V. A. Shargatov, A. P. Chugainova, A. M. Tomasheva\",\"doi\":\"10.1134/s0081543823040211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p> We study the structure of the set of traveling wave solutions for the generalized Korteweg–de Vries–Burgers equation with the flux function having four inflection points. In this case there arise two monotone structures of stable special discontinuities propagating at different velocities (such a situation has not been described earlier in the literature). Both structures of special discontinuities are linearly stable. To analyze the linear stability of the structures of classical and special discontinuities, we apply a method based on the use of the Evans function. We also propose a conjecture that establishes the admissibility of classical discontinuities in the case when there are two stable special discontinuities. </p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0081543823040211\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0081543823040211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要 我们研究了通量函数有四个拐点的广义 Korteweg-de Vries-Burgers 方程的行波解集结构。在这种情况下,会出现两个以不同速度传播的稳定特殊不连续的单调结构(这种情况在以前的文献中没有描述过)。这两种特殊不连续结构都具有线性稳定性。为了分析经典不连续面和特殊不连续面结构的线性稳定性,我们采用了一种基于埃文斯函数的方法。我们还提出了一个猜想,即在存在两个稳定的特殊不连续性的情况下,经典不连续性的可接受性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Structures of Classical and Special Discontinuities for the Generalized Korteweg–de Vries–Burgers Equation in the Case of a Flux Function with Four Inflection Points

分享
查看原文
Structures of Classical and Special Discontinuities for the Generalized Korteweg–de Vries–Burgers Equation in the Case of a Flux Function with Four Inflection Points

Abstract

We study the structure of the set of traveling wave solutions for the generalized Korteweg–de Vries–Burgers equation with the flux function having four inflection points. In this case there arise two monotone structures of stable special discontinuities propagating at different velocities (such a situation has not been described earlier in the literature). Both structures of special discontinuities are linearly stable. To analyze the linear stability of the structures of classical and special discontinuities, we apply a method based on the use of the Evans function. We also propose a conjecture that establishes the admissibility of classical discontinuities in the case when there are two stable special discontinuities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信