Ankhzaya Jamsrandorj, Quynh Hoang Ngan Nguyen, Dawoon Jung, Min Seok Baek, Kyung-Ryoul Mun, Jinwook Kim
{"title":"基于图像的步态时空参数估计(使用单摄像头和 CNN 变换器混合网络)。","authors":"Ankhzaya Jamsrandorj, Quynh Hoang Ngan Nguyen, Dawoon Jung, Min Seok Baek, Kyung-Ryoul Mun, Jinwook Kim","doi":"10.1109/EMBC40787.2023.10339950","DOIUrl":null,"url":null,"abstract":"<p><p>Vision-based gait analysis can play an important role in the remote and continuous monitoring of the elderly's health conditions. However, most vision-based approaches compute gait spatiotemporal parameters using human pose information and provide average parameters. This study aimed to propose a straightforward method for stride-by-stride gait spatiotemporal parameters estimation. A total of 160 elderly individuals participated in this study. Data were gathered with a GAITRite system and a mobile camera simultaneously. Three deep learning networks were trained with a few RGB frames as input and a continuous 1D signal containing both spatial and temporal gait parameters as output. The trained networks estimated the stride lengths with correlations of 0.938 and more and detected gait events with F<sub>1</sub>-scores of 0.914 and more.Clinical relevance- The proposed method showed excellent agreements with the GAITRite system in analyzing spatiotemporal gait parameters. Our approach can be applied to monitor the elderly's health conditions based on their gait parameters for early diagnosis of diseases, proper treatment, and timely intervention.</p>","PeriodicalId":72237,"journal":{"name":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","volume":"2023 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Image-based Gait Spatiotemporal Parameters Estimation using a Single Camera and CNN-Transformer Hybrid Network.\",\"authors\":\"Ankhzaya Jamsrandorj, Quynh Hoang Ngan Nguyen, Dawoon Jung, Min Seok Baek, Kyung-Ryoul Mun, Jinwook Kim\",\"doi\":\"10.1109/EMBC40787.2023.10339950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Vision-based gait analysis can play an important role in the remote and continuous monitoring of the elderly's health conditions. However, most vision-based approaches compute gait spatiotemporal parameters using human pose information and provide average parameters. This study aimed to propose a straightforward method for stride-by-stride gait spatiotemporal parameters estimation. A total of 160 elderly individuals participated in this study. Data were gathered with a GAITRite system and a mobile camera simultaneously. Three deep learning networks were trained with a few RGB frames as input and a continuous 1D signal containing both spatial and temporal gait parameters as output. The trained networks estimated the stride lengths with correlations of 0.938 and more and detected gait events with F<sub>1</sub>-scores of 0.914 and more.Clinical relevance- The proposed method showed excellent agreements with the GAITRite system in analyzing spatiotemporal gait parameters. Our approach can be applied to monitor the elderly's health conditions based on their gait parameters for early diagnosis of diseases, proper treatment, and timely intervention.</p>\",\"PeriodicalId\":72237,\"journal\":{\"name\":\"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference\",\"volume\":\"2023 \",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EMBC40787.2023.10339950\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMBC40787.2023.10339950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Image-based Gait Spatiotemporal Parameters Estimation using a Single Camera and CNN-Transformer Hybrid Network.
Vision-based gait analysis can play an important role in the remote and continuous monitoring of the elderly's health conditions. However, most vision-based approaches compute gait spatiotemporal parameters using human pose information and provide average parameters. This study aimed to propose a straightforward method for stride-by-stride gait spatiotemporal parameters estimation. A total of 160 elderly individuals participated in this study. Data were gathered with a GAITRite system and a mobile camera simultaneously. Three deep learning networks were trained with a few RGB frames as input and a continuous 1D signal containing both spatial and temporal gait parameters as output. The trained networks estimated the stride lengths with correlations of 0.938 and more and detected gait events with F1-scores of 0.914 and more.Clinical relevance- The proposed method showed excellent agreements with the GAITRite system in analyzing spatiotemporal gait parameters. Our approach can be applied to monitor the elderly's health conditions based on their gait parameters for early diagnosis of diseases, proper treatment, and timely intervention.