Mahziar Serri Mazandarani, Gabriel Gagnon-Turcotte, Reza Papi, Benoit Gosselin
{"title":"带电流缓冲输入的低功耗高输入范围 PPG 读出放大器。","authors":"Mahziar Serri Mazandarani, Gabriel Gagnon-Turcotte, Reza Papi, Benoit Gosselin","doi":"10.1109/EMBC40787.2023.10340264","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents ultra-low power photoplethysmography (PPG) readout circuits. The proposed system architecture uses a current buffer between the photodiode (PD) and the transimpedance amplifier (TIA) to isolate the large parasitic capacitance of the PD leading to improves the power consumption of the TIA. A class AB topology is exploited at the output of the amplifier, which allows for increased drive capability without the use of auxiliary circuits. The maximum input current range of the TIA is 160 µA, so the large DC current of the input signal does not saturate the circuit. In the LED driver circuit, by varying the duty cycle of a pulse wave modulation (PWM) signal, the ON and OFF times of the circuits. The amplifier and LED driver are manufactured in the 130 nm TSMC CMOS process. The power consumption of the circuits with a duty cycle of 1% is 3.28 µW (at VDD = 1.2V).Clinical Relevance- Vital signs are becoming a very important research topic due to the recent prevalence of COVID-19 and other respiratory diseases. This research aims to develop and interface circuits to monitor vital signs including blood pressure, heart rate, and respiratory rate to study respiratory disease, drug safety, and efficacy.</p>","PeriodicalId":72237,"journal":{"name":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","volume":"2023 ","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Low-Power High Input Range PPG Readout Amplifier with a Current Buffer Input<sup />.\",\"authors\":\"Mahziar Serri Mazandarani, Gabriel Gagnon-Turcotte, Reza Papi, Benoit Gosselin\",\"doi\":\"10.1109/EMBC40787.2023.10340264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper presents ultra-low power photoplethysmography (PPG) readout circuits. The proposed system architecture uses a current buffer between the photodiode (PD) and the transimpedance amplifier (TIA) to isolate the large parasitic capacitance of the PD leading to improves the power consumption of the TIA. A class AB topology is exploited at the output of the amplifier, which allows for increased drive capability without the use of auxiliary circuits. The maximum input current range of the TIA is 160 µA, so the large DC current of the input signal does not saturate the circuit. In the LED driver circuit, by varying the duty cycle of a pulse wave modulation (PWM) signal, the ON and OFF times of the circuits. The amplifier and LED driver are manufactured in the 130 nm TSMC CMOS process. The power consumption of the circuits with a duty cycle of 1% is 3.28 µW (at VDD = 1.2V).Clinical Relevance- Vital signs are becoming a very important research topic due to the recent prevalence of COVID-19 and other respiratory diseases. This research aims to develop and interface circuits to monitor vital signs including blood pressure, heart rate, and respiratory rate to study respiratory disease, drug safety, and efficacy.</p>\",\"PeriodicalId\":72237,\"journal\":{\"name\":\"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference\",\"volume\":\"2023 \",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EMBC40787.2023.10340264\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMBC40787.2023.10340264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本文介绍了超低功耗光心动图(PPG)读出电路。所提出的系统架构在光电二极管 (PD) 和跨阻抗放大器 (TIA) 之间使用了电流缓冲器,以隔离光电二极管的大寄生电容,从而降低 TIA 的功耗。放大器的输出采用 AB 类拓扑结构,无需使用辅助电路即可提高驱动能力。TIA 的最大输入电流范围为 160 µA,因此输入信号的大直流电流不会使电路饱和。在 LED 驱动器电路中,通过改变脉冲波调制(PWM)信号的占空比,可以改变电路的导通和关断时间。放大器和 LED 驱动器采用 130 纳米 TSMC CMOS 工艺制造。占空比为 1%时,电路的功耗为 3.28 µW(VDD = 1.2V 时)。临床意义--由于 COVID-19 和其他呼吸系统疾病近年来的流行,生命体征正成为一个非常重要的研究课题。这项研究旨在开发和连接监测生命体征(包括血压、心率和呼吸频率)的电路,以研究呼吸系统疾病、药物安全性和有效性。
A Low-Power High Input Range PPG Readout Amplifier with a Current Buffer Input.
This paper presents ultra-low power photoplethysmography (PPG) readout circuits. The proposed system architecture uses a current buffer between the photodiode (PD) and the transimpedance amplifier (TIA) to isolate the large parasitic capacitance of the PD leading to improves the power consumption of the TIA. A class AB topology is exploited at the output of the amplifier, which allows for increased drive capability without the use of auxiliary circuits. The maximum input current range of the TIA is 160 µA, so the large DC current of the input signal does not saturate the circuit. In the LED driver circuit, by varying the duty cycle of a pulse wave modulation (PWM) signal, the ON and OFF times of the circuits. The amplifier and LED driver are manufactured in the 130 nm TSMC CMOS process. The power consumption of the circuits with a duty cycle of 1% is 3.28 µW (at VDD = 1.2V).Clinical Relevance- Vital signs are becoming a very important research topic due to the recent prevalence of COVID-19 and other respiratory diseases. This research aims to develop and interface circuits to monitor vital signs including blood pressure, heart rate, and respiratory rate to study respiratory disease, drug safety, and efficacy.