优化基于心律失常的心电图导联选择,用于计算机解读的心律失常分类。

Serhii Reznichenko, Shijie Zhou
{"title":"优化基于心律失常的心电图导联选择,用于计算机解读的心律失常分类。","authors":"Serhii Reznichenko, Shijie Zhou","doi":"10.1109/EMBC40787.2023.10340738","DOIUrl":null,"url":null,"abstract":"<p><p>The 12-lead ECG only has 8 independent ECG leads, which leads to diagnostic redundancy when using all 12 leads for heart arrhythmias classification. We have previously developed a deep learning (DL)-based computer-interpreted ECG (CIE) approach to identify an optimal 4-lead ECG subset for classifying heart arrhythmias. However, the clinical diagnostic criteria of cardiac arrhythmia types are often lead-specific, so this study is going to explore the selection of arrhythmia-based ECG-lead subsets rather than one general optimal ECG-lead subset, which could improve the classification performance for the CIE. The DL-based CIE model previously developed was used to learn 4 common types of heart arrhythmias (LBBB, RBBB, AF, and I-AVB) for identifying corresponding optimal ECG-lead subsets. A public dataset that splits into training (approx. 70%), validation (approx. 15%), and test (approx. 15%) sets from the PhysioNet Cardiology Challenge 2020 was used to explore the study. The results demonstrated that the DL-based CIE model identified an optimal ECG-lead subset for each arrhythmia: I, II, aVR, aVL, V1, V3, and V5 for I-AVB; I, II, aVR, and V3 for AF; I, II, aVR, aVF, V1, V3, and V4 for LBBB; and I, II, III, aVR, V1, V4, and V6 for RBBB. For each arrhythmia classification, the DL-based CIE model using the optimal ECG-lead subset significantly outperformed the model using the full 12-lead ECG set on the validation set and on the external test dataset.The results support the hypothesis that using an optimal ECG-lead subset instead of the full 12-lead ECG set can improve the classification performance of a specific arrhythmia when using the DL-based CIE approach.Clinical Relevance- Using an arrhythmia-based optimal ECG-lead subset, the classification performance of a deep-learning-based model can be achieved without loss of accuracy in comparison with the full 12-lead set (p<0.05).</p>","PeriodicalId":72237,"journal":{"name":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","volume":"2023 ","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of Arrhythmia-based ECG-lead Selection for Computer-interpreted Heart Rhythm Classification.\",\"authors\":\"Serhii Reznichenko, Shijie Zhou\",\"doi\":\"10.1109/EMBC40787.2023.10340738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The 12-lead ECG only has 8 independent ECG leads, which leads to diagnostic redundancy when using all 12 leads for heart arrhythmias classification. We have previously developed a deep learning (DL)-based computer-interpreted ECG (CIE) approach to identify an optimal 4-lead ECG subset for classifying heart arrhythmias. However, the clinical diagnostic criteria of cardiac arrhythmia types are often lead-specific, so this study is going to explore the selection of arrhythmia-based ECG-lead subsets rather than one general optimal ECG-lead subset, which could improve the classification performance for the CIE. The DL-based CIE model previously developed was used to learn 4 common types of heart arrhythmias (LBBB, RBBB, AF, and I-AVB) for identifying corresponding optimal ECG-lead subsets. A public dataset that splits into training (approx. 70%), validation (approx. 15%), and test (approx. 15%) sets from the PhysioNet Cardiology Challenge 2020 was used to explore the study. The results demonstrated that the DL-based CIE model identified an optimal ECG-lead subset for each arrhythmia: I, II, aVR, aVL, V1, V3, and V5 for I-AVB; I, II, aVR, and V3 for AF; I, II, aVR, aVF, V1, V3, and V4 for LBBB; and I, II, III, aVR, V1, V4, and V6 for RBBB. For each arrhythmia classification, the DL-based CIE model using the optimal ECG-lead subset significantly outperformed the model using the full 12-lead ECG set on the validation set and on the external test dataset.The results support the hypothesis that using an optimal ECG-lead subset instead of the full 12-lead ECG set can improve the classification performance of a specific arrhythmia when using the DL-based CIE approach.Clinical Relevance- Using an arrhythmia-based optimal ECG-lead subset, the classification performance of a deep-learning-based model can be achieved without loss of accuracy in comparison with the full 12-lead set (p<0.05).</p>\",\"PeriodicalId\":72237,\"journal\":{\"name\":\"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference\",\"volume\":\"2023 \",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EMBC40787.2023.10340738\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMBC40787.2023.10340738","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

12 导联心电图只有 8 个独立的心电图导联,这导致在使用所有 12 个导联进行心律失常分类时出现诊断冗余。我们之前开发了一种基于深度学习(DL)的计算机解读心电图(CIE)方法,以确定用于心律失常分类的最佳 4 导联心电图子集。然而,心律失常类型的临床诊断标准通常具有导联特异性,因此本研究将探索选择基于心律失常的心电图导联子集,而不是一个通用的最佳心电图导联子集,从而提高 CIE 的分类性能。之前开发的基于 DL 的 CIE 模型用于学习 4 种常见的心律失常类型(LBBB、RBBB、AF 和 I-AVB),以确定相应的最佳心电图导联子集。该研究使用了一个公共数据集,该数据集分为训练集(约占 70%)、验证集(约占 15%)和测试集(约占 15%),这些数据集来自 2020 年 PhysioNet心脏病学挑战赛。结果表明,基于 DL 的 CIE 模型为每种心律失常确定了最佳心电图导联子集:I-AVB为I、II、aVR、aVL、V1、V3和V5;房颤为I、II、aVR和V3;LBBB为I、II、aVR、aVF、V1、V3和V4;RBBB为I、II、III、aVR、V1、V4和V6。在每种心律失常分类中,使用最佳心电图导联子集的基于 DL 的 CIE 模型在验证集和外部测试数据集上的表现明显优于使用完整 12 导联心电图集的模型。这些结果支持了一个假设,即在使用基于 DL 的 CIE 方法时,使用最佳心电图导联子集而不是完整的 12 导联心电图集可以提高特定心律失常的分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of Arrhythmia-based ECG-lead Selection for Computer-interpreted Heart Rhythm Classification.

The 12-lead ECG only has 8 independent ECG leads, which leads to diagnostic redundancy when using all 12 leads for heart arrhythmias classification. We have previously developed a deep learning (DL)-based computer-interpreted ECG (CIE) approach to identify an optimal 4-lead ECG subset for classifying heart arrhythmias. However, the clinical diagnostic criteria of cardiac arrhythmia types are often lead-specific, so this study is going to explore the selection of arrhythmia-based ECG-lead subsets rather than one general optimal ECG-lead subset, which could improve the classification performance for the CIE. The DL-based CIE model previously developed was used to learn 4 common types of heart arrhythmias (LBBB, RBBB, AF, and I-AVB) for identifying corresponding optimal ECG-lead subsets. A public dataset that splits into training (approx. 70%), validation (approx. 15%), and test (approx. 15%) sets from the PhysioNet Cardiology Challenge 2020 was used to explore the study. The results demonstrated that the DL-based CIE model identified an optimal ECG-lead subset for each arrhythmia: I, II, aVR, aVL, V1, V3, and V5 for I-AVB; I, II, aVR, and V3 for AF; I, II, aVR, aVF, V1, V3, and V4 for LBBB; and I, II, III, aVR, V1, V4, and V6 for RBBB. For each arrhythmia classification, the DL-based CIE model using the optimal ECG-lead subset significantly outperformed the model using the full 12-lead ECG set on the validation set and on the external test dataset.The results support the hypothesis that using an optimal ECG-lead subset instead of the full 12-lead ECG set can improve the classification performance of a specific arrhythmia when using the DL-based CIE approach.Clinical Relevance- Using an arrhythmia-based optimal ECG-lead subset, the classification performance of a deep-learning-based model can be achieved without loss of accuracy in comparison with the full 12-lead set (p<0.05).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信