利用胎儿超声心动图检测双胎妊娠

Rajeshwari Bs, Aman Sinha, Arnab Sengupta, Dhaladhuli Jahnavi, Nirmalya Ghosh, Amit Patra
{"title":"利用胎儿超声心动图检测双胎妊娠","authors":"Rajeshwari Bs, Aman Sinha, Arnab Sengupta, Dhaladhuli Jahnavi, Nirmalya Ghosh, Amit Patra","doi":"10.1109/EMBC40787.2023.10340342","DOIUrl":null,"url":null,"abstract":"<p><p>Fetal phonocardiogram (fPCG), or the electronic recording of fetal heart sounds, is a safe and easily available signal that can be used to monitor fetal wellbeing. In the proposed work an attempt is made to identify twin pregnancies using fPCG data recorded from the fetus with 1/3<sup>rd</sup> power in octave band filtered output as features to train K-Nearest Neighbor (KNN) and support vector machine (SVM) classifiers. The SVM classifier with the quadratic kernel is able to identify singletons and twins with a positive predictive value of 100% and 79.1% respectively. The KNN classifier with k=10 neighbors is able to identify singletons and twins with a positive predictive value of 100% and 81.8% respectively.Clinical Relevance: Identifying twin pregnancies from singleton is an essential clinical protocol followed during late pregnancy as there may be complications like twin-twin transfusion syndrome, selective fetal growth restriction, and preterm labor in twin pregnancy [1], [2]. Ultrasound imaging is the most commonly used technique for twin pregnancy detection, though it is often not affordable or available in rural or low-income populations. Utilization of fPCG in such circumstances has immense clinical potential.</p>","PeriodicalId":72237,"journal":{"name":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","volume":"2023 ","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection of Twin Pregnancies using Fetal Phonocardiogram.\",\"authors\":\"Rajeshwari Bs, Aman Sinha, Arnab Sengupta, Dhaladhuli Jahnavi, Nirmalya Ghosh, Amit Patra\",\"doi\":\"10.1109/EMBC40787.2023.10340342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fetal phonocardiogram (fPCG), or the electronic recording of fetal heart sounds, is a safe and easily available signal that can be used to monitor fetal wellbeing. In the proposed work an attempt is made to identify twin pregnancies using fPCG data recorded from the fetus with 1/3<sup>rd</sup> power in octave band filtered output as features to train K-Nearest Neighbor (KNN) and support vector machine (SVM) classifiers. The SVM classifier with the quadratic kernel is able to identify singletons and twins with a positive predictive value of 100% and 79.1% respectively. The KNN classifier with k=10 neighbors is able to identify singletons and twins with a positive predictive value of 100% and 81.8% respectively.Clinical Relevance: Identifying twin pregnancies from singleton is an essential clinical protocol followed during late pregnancy as there may be complications like twin-twin transfusion syndrome, selective fetal growth restriction, and preterm labor in twin pregnancy [1], [2]. Ultrasound imaging is the most commonly used technique for twin pregnancy detection, though it is often not affordable or available in rural or low-income populations. Utilization of fPCG in such circumstances has immense clinical potential.</p>\",\"PeriodicalId\":72237,\"journal\":{\"name\":\"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference\",\"volume\":\"2023 \",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EMBC40787.2023.10340342\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMBC40787.2023.10340342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

胎儿心音图(fPCG),即胎儿心音的电子记录,是一种安全易得的信号,可用于监测胎儿的健康状况。在拟议的工作中,我们尝试使用胎儿记录的 fPCG 数据和倍频程带 1/3 功率滤波输出作为特征来训练 K-近邻(KNN)和支持向量机(SVM)分类器,从而识别双胎妊娠。采用二次核的 SVM 分类器能够识别单胎和双胞胎,阳性预测值分别为 100%和 79.1%。k=10 邻居的 KNN 分类器能够识别单胎和双胞胎,阳性预测值分别为 100%和 81.8%:从单胎妊娠中识别双胎妊娠是妊娠晚期必须遵循的临床程序,因为双胎妊娠可能会出现双胎输血综合征、选择性胎儿生长受限和早产等并发症[1],[2]。超声成像是检测双胎妊娠最常用的技术,但农村或低收入人群往往负担不起或无法获得这种技术。在这种情况下使用 fPCG 具有巨大的临床潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detection of Twin Pregnancies using Fetal Phonocardiogram.

Fetal phonocardiogram (fPCG), or the electronic recording of fetal heart sounds, is a safe and easily available signal that can be used to monitor fetal wellbeing. In the proposed work an attempt is made to identify twin pregnancies using fPCG data recorded from the fetus with 1/3rd power in octave band filtered output as features to train K-Nearest Neighbor (KNN) and support vector machine (SVM) classifiers. The SVM classifier with the quadratic kernel is able to identify singletons and twins with a positive predictive value of 100% and 79.1% respectively. The KNN classifier with k=10 neighbors is able to identify singletons and twins with a positive predictive value of 100% and 81.8% respectively.Clinical Relevance: Identifying twin pregnancies from singleton is an essential clinical protocol followed during late pregnancy as there may be complications like twin-twin transfusion syndrome, selective fetal growth restriction, and preterm labor in twin pregnancy [1], [2]. Ultrasound imaging is the most commonly used technique for twin pregnancy detection, though it is often not affordable or available in rural or low-income populations. Utilization of fPCG in such circumstances has immense clinical potential.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信