"哪里疼?探索 EDA 信号以检测和定位急性疼痛。

Sumair Aziz, Muhammad Umar Khan, Niraj Hirachan, Girija Chetty, Roland Goecke, Raul Fernandez-Rojas
{"title":"\"哪里疼?探索 EDA 信号以检测和定位急性疼痛。","authors":"Sumair Aziz, Muhammad Umar Khan, Niraj Hirachan, Girija Chetty, Roland Goecke, Raul Fernandez-Rojas","doi":"10.1109/EMBC40787.2023.10341157","DOIUrl":null,"url":null,"abstract":"<p><p>Pain is a highly unpleasant sensory experience, for which currently no objective diagnostic test exists to measure it. Identification and localisation of pain, where the subject is unable to communicate, is a key step in enhancing therapeutic outcomes. Numerous studies have been conducted to categorise pain, but no reliable conclusion has been achieved. This is the first study that aims to show a strict relation between Electrodermal Activity (EDA) signal features and the presence of pain and to clarify the relation of classified signals to the location of the pain. For that purpose, EDA signals were recorded from 28 healthy subjects by inducing electrical pain at two anatomical locations (hand and forearm) of each subject. The EDA data were preprocessed with a Discrete Wavelet Transform to remove any irrelevant information. Chi-square feature selection was used to select features extracted from three domains: time, frequency, and cepstrum. The final feature vector was fed to a pool of classification schemes where an Artificial Neural Network classifier performed best. The proposed method, evaluated through leave-one-subject-out cross-validation, provided 90% accuracy in pain detection (no pain vs. pain), whereas the pain localisation experiment (hand pain vs. forearm pain) achieved 66.67% accuracy.Clinical relevance- This is the first study to provide an analysis of EDA signals in finding the source of the pain. This research explores the viability of using EDA for pain localisation, which may be helpful in the treatment of noncommunicable patients.</p>","PeriodicalId":72237,"journal":{"name":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","volume":"2023 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"\\\"Where does it hurt?\\\": Exploring EDA Signals to Detect and Localise Acute Pain.\",\"authors\":\"Sumair Aziz, Muhammad Umar Khan, Niraj Hirachan, Girija Chetty, Roland Goecke, Raul Fernandez-Rojas\",\"doi\":\"10.1109/EMBC40787.2023.10341157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pain is a highly unpleasant sensory experience, for which currently no objective diagnostic test exists to measure it. Identification and localisation of pain, where the subject is unable to communicate, is a key step in enhancing therapeutic outcomes. Numerous studies have been conducted to categorise pain, but no reliable conclusion has been achieved. This is the first study that aims to show a strict relation between Electrodermal Activity (EDA) signal features and the presence of pain and to clarify the relation of classified signals to the location of the pain. For that purpose, EDA signals were recorded from 28 healthy subjects by inducing electrical pain at two anatomical locations (hand and forearm) of each subject. The EDA data were preprocessed with a Discrete Wavelet Transform to remove any irrelevant information. Chi-square feature selection was used to select features extracted from three domains: time, frequency, and cepstrum. The final feature vector was fed to a pool of classification schemes where an Artificial Neural Network classifier performed best. The proposed method, evaluated through leave-one-subject-out cross-validation, provided 90% accuracy in pain detection (no pain vs. pain), whereas the pain localisation experiment (hand pain vs. forearm pain) achieved 66.67% accuracy.Clinical relevance- This is the first study to provide an analysis of EDA signals in finding the source of the pain. This research explores the viability of using EDA for pain localisation, which may be helpful in the treatment of noncommunicable patients.</p>\",\"PeriodicalId\":72237,\"journal\":{\"name\":\"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference\",\"volume\":\"2023 \",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EMBC40787.2023.10341157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMBC40787.2023.10341157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

疼痛是一种非常不愉快的感觉体验,目前还没有客观的诊断测试来测量它。在受试者无法交流的情况下,疼痛的识别和定位是提高治疗效果的关键一步。已有许多研究对疼痛进行了分类,但尚未得出可靠的结论。这是第一项研究,其目的是显示皮电活动(EDA)信号特征与疼痛存在之间的严格关系,并阐明分类信号与疼痛位置之间的关系。为此,研究人员通过在每个受试者的两个解剖位置(手部和前臂)诱发电痛,记录了 28 名健康受试者的 EDA 信号。使用离散小波变换对 EDA 数据进行预处理,以去除任何无关信息。使用奇平方特征选择法选择从时间、频率和倒频谱三个域提取的特征。最终的特征向量被输入到分类方案库中,其中人工神经网络分类器表现最佳。所提出的方法通过留一受试者的交叉验证进行评估,在疼痛检测(无痛与疼痛)中提供了 90% 的准确率,而疼痛定位实验(手部疼痛与前臂疼痛)则达到了 66.67% 的准确率。这项研究探讨了使用 EDA 进行疼痛定位的可行性,这可能有助于非传染性疾病患者的治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
"Where does it hurt?": Exploring EDA Signals to Detect and Localise Acute Pain.

Pain is a highly unpleasant sensory experience, for which currently no objective diagnostic test exists to measure it. Identification and localisation of pain, where the subject is unable to communicate, is a key step in enhancing therapeutic outcomes. Numerous studies have been conducted to categorise pain, but no reliable conclusion has been achieved. This is the first study that aims to show a strict relation between Electrodermal Activity (EDA) signal features and the presence of pain and to clarify the relation of classified signals to the location of the pain. For that purpose, EDA signals were recorded from 28 healthy subjects by inducing electrical pain at two anatomical locations (hand and forearm) of each subject. The EDA data were preprocessed with a Discrete Wavelet Transform to remove any irrelevant information. Chi-square feature selection was used to select features extracted from three domains: time, frequency, and cepstrum. The final feature vector was fed to a pool of classification schemes where an Artificial Neural Network classifier performed best. The proposed method, evaluated through leave-one-subject-out cross-validation, provided 90% accuracy in pain detection (no pain vs. pain), whereas the pain localisation experiment (hand pain vs. forearm pain) achieved 66.67% accuracy.Clinical relevance- This is the first study to provide an analysis of EDA signals in finding the source of the pain. This research explores the viability of using EDA for pain localisation, which may be helpful in the treatment of noncommunicable patients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信