{"title":"隧道尽头的曙光--从突变鉴定到阿尔茨海默病的潜在治疗方法。","authors":"Lars Lannfelt","doi":"10.48101/ujms.v128.10316","DOIUrl":null,"url":null,"abstract":"<p><p>Recent advances have driven the development of immunotherapies that act by either promoting or suppressing a patient's immune system to treat inflammation, autoimmune disease, cardiovascular disease, infectious diseases, and several cancers. In addition, research conducted over the past 25 years has identified therapeutic targets and indicated that immunotherapy could be used to treat Alzheimer's disease (AD). Despite a number of setbacks, this approach has now led to the development of the first disease-modifying treatments for this devastating disease. A key neuropathological feature of AD is the accumulation of a ~40-amino acid peptide known as amyloid β (Aβ) in the brain and cerebrovasculature. Our detection of an Aβ precursor protein mutation that caused early-onset AD in a Swedish family by enhancing Aβ protofibril formation sharpened the focus on soluble Aβ aggregates (oligomers and protofibrils) as viable therapeutic targets. Initial studies developed and tested a mouse monoclonal antibody (mAb158) with specific conformation-dependent binding to these soluble Aβ aggregates. Treatment with mAb158 selectively reduced Aβ protofibrils in the brain and cerebrospinal fluid of a transgenic mouse model of AD. A humanized version of mAb158 (lecanemab) subsequently entered clinical trials. Based on promising Phase 2 data showing plaque clearance and reduced cognitive decline, a Phase 3 trial found that lecanemab slowed decline on the primary cognitive endpoint by 27% over 18 months and also produced positive effects on secondary clinical endpoints and key biomarkers. In July 2023, the FDA granted lecanemab a full approval, and this therapeutic antibody will be marketed as Leqembi®. This represents a significant advance for patients with AD, although many challenges remain. In particular, it is now more important than ever to identify individuals who are vulnerable to AD, so that treatment can be initiated at an early stage in the disease process.</p>","PeriodicalId":23458,"journal":{"name":"Upsala journal of medical sciences","volume":"128 ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10710852/pdf/","citationCount":"0","resultStr":"{\"title\":\"A light at the end of the tunnel - from mutation identification to a potential treatment for Alzheimer's disease.\",\"authors\":\"Lars Lannfelt\",\"doi\":\"10.48101/ujms.v128.10316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recent advances have driven the development of immunotherapies that act by either promoting or suppressing a patient's immune system to treat inflammation, autoimmune disease, cardiovascular disease, infectious diseases, and several cancers. In addition, research conducted over the past 25 years has identified therapeutic targets and indicated that immunotherapy could be used to treat Alzheimer's disease (AD). Despite a number of setbacks, this approach has now led to the development of the first disease-modifying treatments for this devastating disease. A key neuropathological feature of AD is the accumulation of a ~40-amino acid peptide known as amyloid β (Aβ) in the brain and cerebrovasculature. Our detection of an Aβ precursor protein mutation that caused early-onset AD in a Swedish family by enhancing Aβ protofibril formation sharpened the focus on soluble Aβ aggregates (oligomers and protofibrils) as viable therapeutic targets. Initial studies developed and tested a mouse monoclonal antibody (mAb158) with specific conformation-dependent binding to these soluble Aβ aggregates. Treatment with mAb158 selectively reduced Aβ protofibrils in the brain and cerebrospinal fluid of a transgenic mouse model of AD. A humanized version of mAb158 (lecanemab) subsequently entered clinical trials. Based on promising Phase 2 data showing plaque clearance and reduced cognitive decline, a Phase 3 trial found that lecanemab slowed decline on the primary cognitive endpoint by 27% over 18 months and also produced positive effects on secondary clinical endpoints and key biomarkers. In July 2023, the FDA granted lecanemab a full approval, and this therapeutic antibody will be marketed as Leqembi®. This represents a significant advance for patients with AD, although many challenges remain. In particular, it is now more important than ever to identify individuals who are vulnerable to AD, so that treatment can be initiated at an early stage in the disease process.</p>\",\"PeriodicalId\":23458,\"journal\":{\"name\":\"Upsala journal of medical sciences\",\"volume\":\"128 \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10710852/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Upsala journal of medical sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.48101/ujms.v128.10316\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Upsala journal of medical sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.48101/ujms.v128.10316","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
A light at the end of the tunnel - from mutation identification to a potential treatment for Alzheimer's disease.
Recent advances have driven the development of immunotherapies that act by either promoting or suppressing a patient's immune system to treat inflammation, autoimmune disease, cardiovascular disease, infectious diseases, and several cancers. In addition, research conducted over the past 25 years has identified therapeutic targets and indicated that immunotherapy could be used to treat Alzheimer's disease (AD). Despite a number of setbacks, this approach has now led to the development of the first disease-modifying treatments for this devastating disease. A key neuropathological feature of AD is the accumulation of a ~40-amino acid peptide known as amyloid β (Aβ) in the brain and cerebrovasculature. Our detection of an Aβ precursor protein mutation that caused early-onset AD in a Swedish family by enhancing Aβ protofibril formation sharpened the focus on soluble Aβ aggregates (oligomers and protofibrils) as viable therapeutic targets. Initial studies developed and tested a mouse monoclonal antibody (mAb158) with specific conformation-dependent binding to these soluble Aβ aggregates. Treatment with mAb158 selectively reduced Aβ protofibrils in the brain and cerebrospinal fluid of a transgenic mouse model of AD. A humanized version of mAb158 (lecanemab) subsequently entered clinical trials. Based on promising Phase 2 data showing plaque clearance and reduced cognitive decline, a Phase 3 trial found that lecanemab slowed decline on the primary cognitive endpoint by 27% over 18 months and also produced positive effects on secondary clinical endpoints and key biomarkers. In July 2023, the FDA granted lecanemab a full approval, and this therapeutic antibody will be marketed as Leqembi®. This represents a significant advance for patients with AD, although many challenges remain. In particular, it is now more important than ever to identify individuals who are vulnerable to AD, so that treatment can be initiated at an early stage in the disease process.
期刊介绍:
Upsala Journal of Medical Sciences is published for the Upsala Medical Society. It has been published since 1865 and is one of the oldest medical journals in Sweden.
The journal publishes clinical and experimental original works in the medical field. Although focusing on regional issues, the journal always welcomes contributions from outside Sweden.
Specially extended issues are published occasionally, dealing with special topics, congress proceedings and academic dissertations.