Ahmed A Al Taee, Rami N Khushaba, Tanveer Zia, Adel Al-Jumaily
{"title":"带有注意力机制的深度散射变换提高了基于肌电图的手势识别能力","authors":"Ahmed A Al Taee, Rami N Khushaba, Tanveer Zia, Adel Al-Jumaily","doi":"10.1109/EMBC40787.2023.10340544","DOIUrl":null,"url":null,"abstract":"<p><p>Electromyogram (EMG) signals provide valuable insights into the muscles' activities supporting the different hand movements, but their analysis can be challenging due to their stochastic nature, noise, and non-stationary variations in the signal. We are pioneering the use of a unique combination of wavelet scattering transform (WST) and attention mechanisms adopted from recent sequence modelling developments of deep neural networks for the classification of EMG patterns. Our approach utilizes WST, which decomposes the signal into different frequency components, and then applies a non-linear operation to the wavelet coefficients to create a more robust representation of the extracted features. This is coupled with different variations of attention mechanisms, typically employed to focus on the most important parts of the input data by considering weighted combinations of all input vectors. By applying this technique to EMG signals, we hypothesized that improvement in the classification accuracy could be achieved by focusing on the correlation between the different muscles' activation states associated with the different hand movements. To validate the proposed hypothesis, the study was conducted using three commonly used EMG datasets collected from various environments based on laboratory and wearable devices. This approach shows significant improvement in myoelectric pattern recognition (PR) compared to other methods, with average accuracies of up to 98%.</p>","PeriodicalId":72237,"journal":{"name":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","volume":"2023 ","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Scattering Transform with Attention Mechanisms Improves EMG-based Hand Gesture Recognition.\",\"authors\":\"Ahmed A Al Taee, Rami N Khushaba, Tanveer Zia, Adel Al-Jumaily\",\"doi\":\"10.1109/EMBC40787.2023.10340544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Electromyogram (EMG) signals provide valuable insights into the muscles' activities supporting the different hand movements, but their analysis can be challenging due to their stochastic nature, noise, and non-stationary variations in the signal. We are pioneering the use of a unique combination of wavelet scattering transform (WST) and attention mechanisms adopted from recent sequence modelling developments of deep neural networks for the classification of EMG patterns. Our approach utilizes WST, which decomposes the signal into different frequency components, and then applies a non-linear operation to the wavelet coefficients to create a more robust representation of the extracted features. This is coupled with different variations of attention mechanisms, typically employed to focus on the most important parts of the input data by considering weighted combinations of all input vectors. By applying this technique to EMG signals, we hypothesized that improvement in the classification accuracy could be achieved by focusing on the correlation between the different muscles' activation states associated with the different hand movements. To validate the proposed hypothesis, the study was conducted using three commonly used EMG datasets collected from various environments based on laboratory and wearable devices. This approach shows significant improvement in myoelectric pattern recognition (PR) compared to other methods, with average accuracies of up to 98%.</p>\",\"PeriodicalId\":72237,\"journal\":{\"name\":\"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference\",\"volume\":\"2023 \",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EMBC40787.2023.10340544\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMBC40787.2023.10340544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deep Scattering Transform with Attention Mechanisms Improves EMG-based Hand Gesture Recognition.
Electromyogram (EMG) signals provide valuable insights into the muscles' activities supporting the different hand movements, but their analysis can be challenging due to their stochastic nature, noise, and non-stationary variations in the signal. We are pioneering the use of a unique combination of wavelet scattering transform (WST) and attention mechanisms adopted from recent sequence modelling developments of deep neural networks for the classification of EMG patterns. Our approach utilizes WST, which decomposes the signal into different frequency components, and then applies a non-linear operation to the wavelet coefficients to create a more robust representation of the extracted features. This is coupled with different variations of attention mechanisms, typically employed to focus on the most important parts of the input data by considering weighted combinations of all input vectors. By applying this technique to EMG signals, we hypothesized that improvement in the classification accuracy could be achieved by focusing on the correlation between the different muscles' activation states associated with the different hand movements. To validate the proposed hypothesis, the study was conducted using three commonly used EMG datasets collected from various environments based on laboratory and wearable devices. This approach shows significant improvement in myoelectric pattern recognition (PR) compared to other methods, with average accuracies of up to 98%.