{"title":"窄带损耗--侧重于目标边界的新型损耗函数。","authors":"Zhechen Zhou, Lang Cai, Pengfei Yin, Xusheng Qian, Yakang Dai, Zhiyong Zhou","doi":"10.1109/EMBC40787.2023.10340038","DOIUrl":null,"url":null,"abstract":"<p><p>Loss functions widely employed in medical image segmentation, e.g., Dice or Generalized Dice, treat each pixel of segmentation target(s) equally. These region-based loss functions are concerned with the overall segmentation accuracy. However, in clinical applications, the focus of attention is often the boundary area of the target organ(s). Existing region-based loss functions lack attention to boundary areas. We designed narrow-band loss, which computes the integration of the predicted probability within the narrow-band around the target boundary. From the aspect of how it's derived, Narrow-band loss belongs to the region-based loss function. The difference from normal region-based loss is that Narrow-band loss calculates based on the degree of coincidence of the region surrounding the organ boundary. The advantage is that narrow-band loss can guide networks to focus on the target's boundary and neighborhood. We also generalize narrow-band loss to multi-target segmentation. We tested narrow-band loss on two datasets of different parts of the human body: the brain dataset with 416 cases, each case with 35 labels, and the abdominal dataset with 50 cases, each case with 12 labels. Narrow-band loss has improved greatly in hd95 metric and dice metric compared with baseline, which is dice loss only.</p>","PeriodicalId":72237,"journal":{"name":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","volume":"2023 ","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Narrow-band loss - a novel loss function focused on target boundary.\",\"authors\":\"Zhechen Zhou, Lang Cai, Pengfei Yin, Xusheng Qian, Yakang Dai, Zhiyong Zhou\",\"doi\":\"10.1109/EMBC40787.2023.10340038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Loss functions widely employed in medical image segmentation, e.g., Dice or Generalized Dice, treat each pixel of segmentation target(s) equally. These region-based loss functions are concerned with the overall segmentation accuracy. However, in clinical applications, the focus of attention is often the boundary area of the target organ(s). Existing region-based loss functions lack attention to boundary areas. We designed narrow-band loss, which computes the integration of the predicted probability within the narrow-band around the target boundary. From the aspect of how it's derived, Narrow-band loss belongs to the region-based loss function. The difference from normal region-based loss is that Narrow-band loss calculates based on the degree of coincidence of the region surrounding the organ boundary. The advantage is that narrow-band loss can guide networks to focus on the target's boundary and neighborhood. We also generalize narrow-band loss to multi-target segmentation. We tested narrow-band loss on two datasets of different parts of the human body: the brain dataset with 416 cases, each case with 35 labels, and the abdominal dataset with 50 cases, each case with 12 labels. Narrow-band loss has improved greatly in hd95 metric and dice metric compared with baseline, which is dice loss only.</p>\",\"PeriodicalId\":72237,\"journal\":{\"name\":\"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference\",\"volume\":\"2023 \",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EMBC40787.2023.10340038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMBC40787.2023.10340038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Narrow-band loss - a novel loss function focused on target boundary.
Loss functions widely employed in medical image segmentation, e.g., Dice or Generalized Dice, treat each pixel of segmentation target(s) equally. These region-based loss functions are concerned with the overall segmentation accuracy. However, in clinical applications, the focus of attention is often the boundary area of the target organ(s). Existing region-based loss functions lack attention to boundary areas. We designed narrow-band loss, which computes the integration of the predicted probability within the narrow-band around the target boundary. From the aspect of how it's derived, Narrow-band loss belongs to the region-based loss function. The difference from normal region-based loss is that Narrow-band loss calculates based on the degree of coincidence of the region surrounding the organ boundary. The advantage is that narrow-band loss can guide networks to focus on the target's boundary and neighborhood. We also generalize narrow-band loss to multi-target segmentation. We tested narrow-band loss on two datasets of different parts of the human body: the brain dataset with 416 cases, each case with 35 labels, and the abdominal dataset with 50 cases, each case with 12 labels. Narrow-band loss has improved greatly in hd95 metric and dice metric compared with baseline, which is dice loss only.