乙型肝炎病毒调控肝细胞 MicroRNA 的转录调控图谱

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
ACS Applied Bio Materials Pub Date : 2023-12-01 Epub Date: 2023-12-08 DOI:10.1089/omi.2023.0171
Krishnapriya Ramakrishnan, Sreeranjini Babu, Vineetha Shaji, Sowmya Soman, Anila Leelamma, Niyas Rehman, Rajesh Raju
{"title":"乙型肝炎病毒调控肝细胞 MicroRNA 的转录调控图谱","authors":"Krishnapriya Ramakrishnan, Sreeranjini Babu, Vineetha Shaji, Sowmya Soman, Anila Leelamma, Niyas Rehman, Rajesh Raju","doi":"10.1089/omi.2023.0171","DOIUrl":null,"url":null,"abstract":"<p><p>Hepatitis B virus (HBV) is an enveloped, hepatotropic, noncytopathic virus with a partially double-stranded DNA genome. It infects hepatocytes and is associated with progression to liver fibrosis and cirrhosis, culminating in hepatocellular carcinoma (HCC), accounting for 55% of total HCC cases. MicroRNAs (miRNAs) regulated by HBV play an important role in these pathologies. Mapping the miRNAs responsive to HBV and HBV-specific proteins, including HBV X protein (HBx) that harbor the majority of HBV-human protein interactions, could aid accelerate the diagnostics and therapeutics innovation against the infection and associated diseases. With this in mind, we used a unique annotation strategy whereby we first amassed 362 mature HBV responsive-human Differentially Expressed miRNAs (HBV-hDEmiRs). The core experimentally-validated messenger RNA targets of the HBV-hDEmiRs were mostly associated with viral infections and hepatic inflammation processes. Moreover, our annotation strategy enabled the characterization of HBx-dependent/independent HBV-hDEmiRs as a tool for evaluation of the impact of HBx as a therapeutic target. Bioinformatics analysis of the HBV-human protein-protein interactome revealed new insights into the transcriptional regulatory network of the HBV-hDEmiRs. We performed a comparative analysis of data on miRNAs gathered from HBV infected cell line studies and from tissue studies of fibrosis, cirrhosis, and HCC. Accordingly, we propose hsa-miR-15a-5p that is downregulated by multiple HBV proteins, including HBx, as a potential biomarker of HBV infection, and its progression to HCC. In all, this study underscores (1) the complexity of miRNA regulation in response to HBV infection and its progression into other liver pathologies and (2) provides a regulatory map of HBV-hDEmiRs and the underlying mechanisms modulating their expression through a cross talk between HBV viral proteins and human transcription factors.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hepatitis B Virus Modulated Transcriptional Regulatory Map of Hepatic Cellular MicroRNAs.\",\"authors\":\"Krishnapriya Ramakrishnan, Sreeranjini Babu, Vineetha Shaji, Sowmya Soman, Anila Leelamma, Niyas Rehman, Rajesh Raju\",\"doi\":\"10.1089/omi.2023.0171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hepatitis B virus (HBV) is an enveloped, hepatotropic, noncytopathic virus with a partially double-stranded DNA genome. It infects hepatocytes and is associated with progression to liver fibrosis and cirrhosis, culminating in hepatocellular carcinoma (HCC), accounting for 55% of total HCC cases. MicroRNAs (miRNAs) regulated by HBV play an important role in these pathologies. Mapping the miRNAs responsive to HBV and HBV-specific proteins, including HBV X protein (HBx) that harbor the majority of HBV-human protein interactions, could aid accelerate the diagnostics and therapeutics innovation against the infection and associated diseases. With this in mind, we used a unique annotation strategy whereby we first amassed 362 mature HBV responsive-human Differentially Expressed miRNAs (HBV-hDEmiRs). The core experimentally-validated messenger RNA targets of the HBV-hDEmiRs were mostly associated with viral infections and hepatic inflammation processes. Moreover, our annotation strategy enabled the characterization of HBx-dependent/independent HBV-hDEmiRs as a tool for evaluation of the impact of HBx as a therapeutic target. Bioinformatics analysis of the HBV-human protein-protein interactome revealed new insights into the transcriptional regulatory network of the HBV-hDEmiRs. We performed a comparative analysis of data on miRNAs gathered from HBV infected cell line studies and from tissue studies of fibrosis, cirrhosis, and HCC. Accordingly, we propose hsa-miR-15a-5p that is downregulated by multiple HBV proteins, including HBx, as a potential biomarker of HBV infection, and its progression to HCC. In all, this study underscores (1) the complexity of miRNA regulation in response to HBV infection and its progression into other liver pathologies and (2) provides a regulatory map of HBV-hDEmiRs and the underlying mechanisms modulating their expression through a cross talk between HBV viral proteins and human transcription factors.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/omi.2023.0171\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/omi.2023.0171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/8 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

乙型肝炎病毒(HBV)是一种具有部分双链 DNA 基因组的包膜型、趋肝性、非细胞病变病毒。它感染肝细胞,并导致肝纤维化和肝硬化,最终导致肝细胞癌(HCC),占 HCC 病例总数的 55%。受 HBV 调控的微 RNA(miRNA)在这些病变中发挥着重要作用。绘制对 HBV 和 HBV 特异性蛋白(包括 HBV X 蛋白(HBx))反应的 miRNAs 图谱有助于加快针对感染和相关疾病的诊断和治疗创新。有鉴于此,我们采用了一种独特的注释策略,首先收集了 362 个成熟的 HBV 反应-人类差异表达 miRNA(HBV-hDEmiRs)。经实验验证,HBV-hDEmiRs 的核心信使 RNA 靶标大多与病毒感染和肝脏炎症过程有关。此外,我们的注释策略还能确定依赖/不依赖 HBx 的 HBV-hDEmiRs 的特征,以此作为评估 HBx 作为治疗靶点的影响的工具。对HBV-人类蛋白质-蛋白质相互作用组的生物信息学分析揭示了HBV-hDEmiRs转录调控网络的新见解。我们对从 HBV 感染细胞系研究以及纤维化、肝硬化和 HCC 组织研究中收集到的 miRNA 数据进行了比较分析。因此,我们提出了 hsa-miR-15a-5p,它被包括 HBx 在内的多种 HBV 蛋白下调,可作为 HBV 感染及其发展为 HCC 的潜在生物标志物。总之,这项研究强调了(1)miRNA 在应对 HBV 感染及其进展为其他肝脏病变过程中调控的复杂性;(2)提供了 HBV-hDEmiRs 的调控图,以及通过 HBV 病毒蛋白和人类转录因子之间的交叉对话调节其表达的潜在机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hepatitis B Virus Modulated Transcriptional Regulatory Map of Hepatic Cellular MicroRNAs.

Hepatitis B virus (HBV) is an enveloped, hepatotropic, noncytopathic virus with a partially double-stranded DNA genome. It infects hepatocytes and is associated with progression to liver fibrosis and cirrhosis, culminating in hepatocellular carcinoma (HCC), accounting for 55% of total HCC cases. MicroRNAs (miRNAs) regulated by HBV play an important role in these pathologies. Mapping the miRNAs responsive to HBV and HBV-specific proteins, including HBV X protein (HBx) that harbor the majority of HBV-human protein interactions, could aid accelerate the diagnostics and therapeutics innovation against the infection and associated diseases. With this in mind, we used a unique annotation strategy whereby we first amassed 362 mature HBV responsive-human Differentially Expressed miRNAs (HBV-hDEmiRs). The core experimentally-validated messenger RNA targets of the HBV-hDEmiRs were mostly associated with viral infections and hepatic inflammation processes. Moreover, our annotation strategy enabled the characterization of HBx-dependent/independent HBV-hDEmiRs as a tool for evaluation of the impact of HBx as a therapeutic target. Bioinformatics analysis of the HBV-human protein-protein interactome revealed new insights into the transcriptional regulatory network of the HBV-hDEmiRs. We performed a comparative analysis of data on miRNAs gathered from HBV infected cell line studies and from tissue studies of fibrosis, cirrhosis, and HCC. Accordingly, we propose hsa-miR-15a-5p that is downregulated by multiple HBV proteins, including HBx, as a potential biomarker of HBV infection, and its progression to HCC. In all, this study underscores (1) the complexity of miRNA regulation in response to HBV infection and its progression into other liver pathologies and (2) provides a regulatory map of HBV-hDEmiRs and the underlying mechanisms modulating their expression through a cross talk between HBV viral proteins and human transcription factors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信