{"title":"移动通信日志时间序列检测抑郁症状。","authors":"M L Tlachac, Miranda Reisch, Michael Heinz","doi":"10.1109/EMBC40787.2023.10341154","DOIUrl":null,"url":null,"abstract":"<p><p>Major Depressive Disorder (MDD) is highly prevalent and characterized by often debilitating behavioral and cognitive symptoms. MDD is poorly understood, likely due to considerable heterogeneity and self-report-driven symptomatology. While researchers have been exploring the ability of machine learning to screen for MDD, much less attention has been paid to individual symptoms. We posit that understanding the relationship between objective data streams and individual depression symptoms is important for understanding the considerable heterogeneity in MDD. Thus, we conduct a comprehensive comparative study to explore the ability of machine learning to predict nine self-reported depressive symptoms with call and text logs. We created time series from the logs of over 300 participants by aggregating communication attributes- average length, count, or contacts- every 4, 6, 12, or 24 hours. We were most successful predicting movement irregularities with a balanced accuracy of 0.70. Further, we predicted suicidal ideation with a balanced accuracy of 0.67. Outgoing texts proved to be the most useful log type. This study provides valuable insights for future mobile health research aimed at personalizing assessment and intervention for MDD.</p>","PeriodicalId":72237,"journal":{"name":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","volume":"2023 ","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mobile Communication Log Time Series to Detect Depressive Symptoms.\",\"authors\":\"M L Tlachac, Miranda Reisch, Michael Heinz\",\"doi\":\"10.1109/EMBC40787.2023.10341154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Major Depressive Disorder (MDD) is highly prevalent and characterized by often debilitating behavioral and cognitive symptoms. MDD is poorly understood, likely due to considerable heterogeneity and self-report-driven symptomatology. While researchers have been exploring the ability of machine learning to screen for MDD, much less attention has been paid to individual symptoms. We posit that understanding the relationship between objective data streams and individual depression symptoms is important for understanding the considerable heterogeneity in MDD. Thus, we conduct a comprehensive comparative study to explore the ability of machine learning to predict nine self-reported depressive symptoms with call and text logs. We created time series from the logs of over 300 participants by aggregating communication attributes- average length, count, or contacts- every 4, 6, 12, or 24 hours. We were most successful predicting movement irregularities with a balanced accuracy of 0.70. Further, we predicted suicidal ideation with a balanced accuracy of 0.67. Outgoing texts proved to be the most useful log type. This study provides valuable insights for future mobile health research aimed at personalizing assessment and intervention for MDD.</p>\",\"PeriodicalId\":72237,\"journal\":{\"name\":\"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference\",\"volume\":\"2023 \",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EMBC40787.2023.10341154\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMBC40787.2023.10341154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mobile Communication Log Time Series to Detect Depressive Symptoms.
Major Depressive Disorder (MDD) is highly prevalent and characterized by often debilitating behavioral and cognitive symptoms. MDD is poorly understood, likely due to considerable heterogeneity and self-report-driven symptomatology. While researchers have been exploring the ability of machine learning to screen for MDD, much less attention has been paid to individual symptoms. We posit that understanding the relationship between objective data streams and individual depression symptoms is important for understanding the considerable heterogeneity in MDD. Thus, we conduct a comprehensive comparative study to explore the ability of machine learning to predict nine self-reported depressive symptoms with call and text logs. We created time series from the logs of over 300 participants by aggregating communication attributes- average length, count, or contacts- every 4, 6, 12, or 24 hours. We were most successful predicting movement irregularities with a balanced accuracy of 0.70. Further, we predicted suicidal ideation with a balanced accuracy of 0.67. Outgoing texts proved to be the most useful log type. This study provides valuable insights for future mobile health research aimed at personalizing assessment and intervention for MDD.