Anne E Jung, Christina N Davidson, Christopher J Land, Aubrianne I Dash, Barlow T Guess, Heidi S Edmonds, Rhonda L Pitsch, Sean W Harshman
{"title":"热解吸管对呼气数据变异性的影响。","authors":"Anne E Jung, Christina N Davidson, Christopher J Land, Aubrianne I Dash, Barlow T Guess, Heidi S Edmonds, Rhonda L Pitsch, Sean W Harshman","doi":"10.1088/1752-7163/ad15a3","DOIUrl":null,"url":null,"abstract":"<p><p>Due to the overall low abundance of volatile compounds in exhaled breath, it is necessary to preconcentrate the sample prior to traditional thermal desorption (TD) gas chromatography mass spectrometry analysis. While certain aspects of TD tubes, such as volatile storage, have been evaluated, many aspects remain uncharacterized. Two common TD tubes, Tenax TA and Biomonitoring 5TD tubes, were evaluated for background content and flow rate variability. The data illustrate that the Biomonitoring 5TD tubes have the highest number (23) and abundance of background contamination greater than 3x the mean noise when compared to Tenax TA (13) and empty tubes (9). Tentative identifications of the compounds in the background contamination experiment show that greater than 59% (16/27) of the compounds identified have been reported in the breath literature. The data illustrate the TD tube background abundance could account for more than 70% of the chromatographic signal from exhaled breath for these select compounds. Flow rate measurements of 200 Tenax TA and 200 Biomonitoring 5TD tubes show a large range in measured flow rates among the TD tubes (Tenax: 252.9-284.0 ml min<sup>-1</sup>, 5TD: 220.6-255.1 ml min<sup>-1</sup>). Finally, TD tubes of each type, Tenax TA and Biomonitoring 5TD, previously established to have high, medium, and low flow rates, show insignificant differences (<i>p</i>> 0.05) among the tubes of different flow rates, using both gas standards and an exhaled breath from a peppermint experiment. Collectively, these results establish overall background compounds attributed to each TD tube type tested. Additionally, while measured flow rate variability is present and plausibly impacts exhaled breath results, the data demonstrate no statistically significant difference was observed between tubes showing high, medium, and low flow rates from two separate sample types.</p>","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of thermal desorption tubes on the variability of exhaled breath data.\",\"authors\":\"Anne E Jung, Christina N Davidson, Christopher J Land, Aubrianne I Dash, Barlow T Guess, Heidi S Edmonds, Rhonda L Pitsch, Sean W Harshman\",\"doi\":\"10.1088/1752-7163/ad15a3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Due to the overall low abundance of volatile compounds in exhaled breath, it is necessary to preconcentrate the sample prior to traditional thermal desorption (TD) gas chromatography mass spectrometry analysis. While certain aspects of TD tubes, such as volatile storage, have been evaluated, many aspects remain uncharacterized. Two common TD tubes, Tenax TA and Biomonitoring 5TD tubes, were evaluated for background content and flow rate variability. The data illustrate that the Biomonitoring 5TD tubes have the highest number (23) and abundance of background contamination greater than 3x the mean noise when compared to Tenax TA (13) and empty tubes (9). Tentative identifications of the compounds in the background contamination experiment show that greater than 59% (16/27) of the compounds identified have been reported in the breath literature. The data illustrate the TD tube background abundance could account for more than 70% of the chromatographic signal from exhaled breath for these select compounds. Flow rate measurements of 200 Tenax TA and 200 Biomonitoring 5TD tubes show a large range in measured flow rates among the TD tubes (Tenax: 252.9-284.0 ml min<sup>-1</sup>, 5TD: 220.6-255.1 ml min<sup>-1</sup>). Finally, TD tubes of each type, Tenax TA and Biomonitoring 5TD, previously established to have high, medium, and low flow rates, show insignificant differences (<i>p</i>> 0.05) among the tubes of different flow rates, using both gas standards and an exhaled breath from a peppermint experiment. Collectively, these results establish overall background compounds attributed to each TD tube type tested. Additionally, while measured flow rate variability is present and plausibly impacts exhaled breath results, the data demonstrate no statistically significant difference was observed between tubes showing high, medium, and low flow rates from two separate sample types.</p>\",\"PeriodicalId\":15306,\"journal\":{\"name\":\"Journal of breath research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of breath research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1088/1752-7163/ad15a3\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of breath research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1088/1752-7163/ad15a3","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Impact of thermal desorption tubes on the variability of exhaled breath data.
Due to the overall low abundance of volatile compounds in exhaled breath, it is necessary to preconcentrate the sample prior to traditional thermal desorption (TD) gas chromatography mass spectrometry analysis. While certain aspects of TD tubes, such as volatile storage, have been evaluated, many aspects remain uncharacterized. Two common TD tubes, Tenax TA and Biomonitoring 5TD tubes, were evaluated for background content and flow rate variability. The data illustrate that the Biomonitoring 5TD tubes have the highest number (23) and abundance of background contamination greater than 3x the mean noise when compared to Tenax TA (13) and empty tubes (9). Tentative identifications of the compounds in the background contamination experiment show that greater than 59% (16/27) of the compounds identified have been reported in the breath literature. The data illustrate the TD tube background abundance could account for more than 70% of the chromatographic signal from exhaled breath for these select compounds. Flow rate measurements of 200 Tenax TA and 200 Biomonitoring 5TD tubes show a large range in measured flow rates among the TD tubes (Tenax: 252.9-284.0 ml min-1, 5TD: 220.6-255.1 ml min-1). Finally, TD tubes of each type, Tenax TA and Biomonitoring 5TD, previously established to have high, medium, and low flow rates, show insignificant differences (p> 0.05) among the tubes of different flow rates, using both gas standards and an exhaled breath from a peppermint experiment. Collectively, these results establish overall background compounds attributed to each TD tube type tested. Additionally, while measured flow rate variability is present and plausibly impacts exhaled breath results, the data demonstrate no statistically significant difference was observed between tubes showing high, medium, and low flow rates from two separate sample types.
期刊介绍:
Journal of Breath Research is dedicated to all aspects of scientific breath research. The traditional focus is on analysis of volatile compounds and aerosols in exhaled breath for the investigation of exogenous exposures, metabolism, toxicology, health status and the diagnosis of disease and breath odours. The journal also welcomes other breath-related topics.
Typical areas of interest include:
Big laboratory instrumentation: describing new state-of-the-art analytical instrumentation capable of performing high-resolution discovery and targeted breath research; exploiting complex technologies drawn from other areas of biochemistry and genetics for breath research.
Engineering solutions: developing new breath sampling technologies for condensate and aerosols, for chemical and optical sensors, for extraction and sample preparation methods, for automation and standardization, and for multiplex analyses to preserve the breath matrix and facilitating analytical throughput. Measure exhaled constituents (e.g. CO2, acetone, isoprene) as markers of human presence or mitigate such contaminants in enclosed environments.
Human and animal in vivo studies: decoding the ''breath exposome'', implementing exposure and intervention studies, performing cross-sectional and case-control research, assaying immune and inflammatory response, and testing mammalian host response to infections and exogenous exposures to develop information directly applicable to systems biology. Studying inhalation toxicology; inhaled breath as a source of internal dose; resultant blood, breath and urinary biomarkers linked to inhalation pathway.
Cellular and molecular level in vitro studies.
Clinical, pharmacological and forensic applications.
Mathematical, statistical and graphical data interpretation.