支持跨血统社会性的基因调控和复杂性差异。

IF 2.3 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Genome Pub Date : 2024-04-01 Epub Date: 2023-12-14 DOI:10.1139/gen-2023-0054
Benjamin C Pyenson, Sandra M Rehan
{"title":"支持跨血统社会性的基因调控和复杂性差异。","authors":"Benjamin C Pyenson, Sandra M Rehan","doi":"10.1139/gen-2023-0054","DOIUrl":null,"url":null,"abstract":"<p><p>Across evolutionary lineages, insects vary in social complexity, from those that exhibit extended parental care to those with elaborate divisions of labor. Here, we synthesize the sociogenomic resources from hundreds of species to describe common gene regulatory mechanisms in insects that regulate social organization across phylogeny and levels of social complexity. Different social phenotypes expressed by insects can be linked to the organization of co-expressing gene networks and features of the epigenetic landscape. Insect sociality also stems from processes like the emergence of parental care and the decoupling of ancestral genetic programs. One underexplored avenue is how variation in a group's social environment affects the gene expression of individuals. Additionally, an experimental reduction of gene expression would demonstrate how the activity of specific genes contributes to insect social phenotypes. While tissue specificity provides greater localization of the gene expression underlying social complexity, emerging transcriptomic analysis of insect brains at the cellular level provides even greater resolution to understand the molecular basis of social insect evolution.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":" ","pages":"99-108"},"PeriodicalIF":2.3000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gene regulation supporting sociality shared across lineages and variation in complexity.\",\"authors\":\"Benjamin C Pyenson, Sandra M Rehan\",\"doi\":\"10.1139/gen-2023-0054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Across evolutionary lineages, insects vary in social complexity, from those that exhibit extended parental care to those with elaborate divisions of labor. Here, we synthesize the sociogenomic resources from hundreds of species to describe common gene regulatory mechanisms in insects that regulate social organization across phylogeny and levels of social complexity. Different social phenotypes expressed by insects can be linked to the organization of co-expressing gene networks and features of the epigenetic landscape. Insect sociality also stems from processes like the emergence of parental care and the decoupling of ancestral genetic programs. One underexplored avenue is how variation in a group's social environment affects the gene expression of individuals. Additionally, an experimental reduction of gene expression would demonstrate how the activity of specific genes contributes to insect social phenotypes. While tissue specificity provides greater localization of the gene expression underlying social complexity, emerging transcriptomic analysis of insect brains at the cellular level provides even greater resolution to understand the molecular basis of social insect evolution.</p>\",\"PeriodicalId\":12809,\"journal\":{\"name\":\"Genome\",\"volume\":\" \",\"pages\":\"99-108\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1139/gen-2023-0054\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1139/gen-2023-0054","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/14 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在不同的进化世系中,昆虫的社会复杂性各不相同,有的表现出延伸的亲代照料,有的则有精细的劳动分工。在这里,我们综合了来自数百个物种的社会基因组资源,描述了昆虫在不同系统发育和社会复杂性水平上调节社会组织的共同基因调控机制。昆虫表现出的不同社会表型可以与共表达基因网络的组织和表观遗传景观的特征联系起来。昆虫的社会性还源于亲代照料的出现和祖先遗传程序的脱钩等过程。一个尚未充分探索的途径是群体社会环境的变化如何影响个体的基因表达。此外,减少基因表达的实验将证明特定基因的活性如何影响昆虫的社会表型。组织特异性为社会复杂性背后的基因表达提供了更大的定位,而新出现的细胞水平的昆虫大脑转录组分析为了解昆虫社会进化的分子基础提供了更高的分辨率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gene regulation supporting sociality shared across lineages and variation in complexity.

Across evolutionary lineages, insects vary in social complexity, from those that exhibit extended parental care to those with elaborate divisions of labor. Here, we synthesize the sociogenomic resources from hundreds of species to describe common gene regulatory mechanisms in insects that regulate social organization across phylogeny and levels of social complexity. Different social phenotypes expressed by insects can be linked to the organization of co-expressing gene networks and features of the epigenetic landscape. Insect sociality also stems from processes like the emergence of parental care and the decoupling of ancestral genetic programs. One underexplored avenue is how variation in a group's social environment affects the gene expression of individuals. Additionally, an experimental reduction of gene expression would demonstrate how the activity of specific genes contributes to insect social phenotypes. While tissue specificity provides greater localization of the gene expression underlying social complexity, emerging transcriptomic analysis of insect brains at the cellular level provides even greater resolution to understand the molecular basis of social insect evolution.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genome
Genome 生物-生物工程与应用微生物
CiteScore
5.30
自引率
3.20%
发文量
42
审稿时长
6-12 weeks
期刊介绍: Genome is a monthly journal, established in 1959, that publishes original research articles, reviews, mini-reviews, current opinions, and commentaries. Areas of interest include general genetics and genomics, cytogenetics, molecular and evolutionary genetics, developmental genetics, population genetics, phylogenomics, molecular identification, as well as emerging areas such as ecological, comparative, and functional genomics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信