心理任务调制 10 赫兹以上的运动单元,是运动增强的潜在控制信号:一项初步研究。

Patrick Ofner, Meng-Jung Lee, Dario Farina, Carsten Mehring
{"title":"心理任务调制 10 赫兹以上的运动单元,是运动增强的潜在控制信号:一项初步研究。","authors":"Patrick Ofner, Meng-Jung Lee, Dario Farina, Carsten Mehring","doi":"10.1109/EMBC40787.2023.10340378","DOIUrl":null,"url":null,"abstract":"<p><p>Spinal motor neurons receive a wide range of input frequencies. However, only frequencies below ca. 10 Hz are directly translated into motor output. Frequency components above 10 Hz are filtered out by neural pathways and muscle dynamics. These higher frequency components may have an indirect effect on motor output, or may simply represent movement-independent oscillations that leak down from supraspinal areas such as the motor cortex. If movement-independent oscillations leak down from supraspinal areas, they could provide a potential control signal in movement augmentation applications. We analysed high-density electromyography (HD-EMG) signals from the tibialis anterior muscle while human subjects performed various mental tasks. The subjects performed an isometric dorsiflexion of the right foot at a low level of force while simultaneously (1) imagining a movement of the right foot, (2) imagining a movement of both hands, (3) performing a mathematical task, or (4) performing no additional task. We classified the channel-averaged HD-EMG signals and the cumulative spike train (CST) of motor-units using a filter bank and a linear classifier. We found that in some subjects, the mental task can be classified from the channel-averaged HD-EMG signals and the CST in oscillations above 10 Hz. Furthermore, we found that these oscillation modulations are incompatible with a systematic and task-dependent change in force level. Our preliminary findings from a limited number of subjects suggest that some mental task-induced oscillations from supraspinal areas leak down to spinal motor neurons and are discriminable via EMG or CST signals at the innervated muscle.</p>","PeriodicalId":72237,"journal":{"name":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mental Tasks Modulate Motor-Units Above 10 Hz and are a Potential Control Signal for Movement Augmentation: a Preliminary Study.\",\"authors\":\"Patrick Ofner, Meng-Jung Lee, Dario Farina, Carsten Mehring\",\"doi\":\"10.1109/EMBC40787.2023.10340378\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Spinal motor neurons receive a wide range of input frequencies. However, only frequencies below ca. 10 Hz are directly translated into motor output. Frequency components above 10 Hz are filtered out by neural pathways and muscle dynamics. These higher frequency components may have an indirect effect on motor output, or may simply represent movement-independent oscillations that leak down from supraspinal areas such as the motor cortex. If movement-independent oscillations leak down from supraspinal areas, they could provide a potential control signal in movement augmentation applications. We analysed high-density electromyography (HD-EMG) signals from the tibialis anterior muscle while human subjects performed various mental tasks. The subjects performed an isometric dorsiflexion of the right foot at a low level of force while simultaneously (1) imagining a movement of the right foot, (2) imagining a movement of both hands, (3) performing a mathematical task, or (4) performing no additional task. We classified the channel-averaged HD-EMG signals and the cumulative spike train (CST) of motor-units using a filter bank and a linear classifier. We found that in some subjects, the mental task can be classified from the channel-averaged HD-EMG signals and the CST in oscillations above 10 Hz. Furthermore, we found that these oscillation modulations are incompatible with a systematic and task-dependent change in force level. Our preliminary findings from a limited number of subjects suggest that some mental task-induced oscillations from supraspinal areas leak down to spinal motor neurons and are discriminable via EMG or CST signals at the innervated muscle.</p>\",\"PeriodicalId\":72237,\"journal\":{\"name\":\"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EMBC40787.2023.10340378\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMBC40787.2023.10340378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

脊髓运动神经元接收的输入频率范围很广。然而,只有低于约 10 赫兹的频率才能直接转化为运动输出。高于 10 赫兹的频率成分会被神经通路和肌肉动力学过滤掉。这些频率较高的成分可能会对运动输出产生间接影响,也可能仅仅代表从运动皮层等脊髓上区域泄漏下来的与运动无关的振荡。如果与运动无关的振荡从脊髓上区泄漏下来,它们就可能为运动增强应用提供潜在的控制信号。我们分析了受试者在完成各种心理任务时来自胫骨前肌的高密度肌电图(HD-EMG)信号。受试者以较小的力量水平进行右脚等长外展,同时(1)想象右脚的运动;(2)想象双手的运动;(3)执行数学任务;或(4)不执行其他任务。我们使用滤波器组和线性分类器对通道平均的 HD-EMG 信号和运动单元的累积尖峰序列(CST)进行了分类。我们发现,在某些受试者中,可以从通道平均 HD-EMG 信号和 CST 中高于 10 Hz 的振荡中对心理任务进行分类。此外,我们还发现这些振荡调制与系统性的、与任务相关的力量水平变化不相容。我们从数量有限的受试者身上获得的初步研究结果表明,一些由精神任务引起的振荡从脊髓上区向下渗漏到脊髓运动神经元,并可通过受支配肌肉的 EMG 或 CST 信号进行分辨。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mental Tasks Modulate Motor-Units Above 10 Hz and are a Potential Control Signal for Movement Augmentation: a Preliminary Study.

Spinal motor neurons receive a wide range of input frequencies. However, only frequencies below ca. 10 Hz are directly translated into motor output. Frequency components above 10 Hz are filtered out by neural pathways and muscle dynamics. These higher frequency components may have an indirect effect on motor output, or may simply represent movement-independent oscillations that leak down from supraspinal areas such as the motor cortex. If movement-independent oscillations leak down from supraspinal areas, they could provide a potential control signal in movement augmentation applications. We analysed high-density electromyography (HD-EMG) signals from the tibialis anterior muscle while human subjects performed various mental tasks. The subjects performed an isometric dorsiflexion of the right foot at a low level of force while simultaneously (1) imagining a movement of the right foot, (2) imagining a movement of both hands, (3) performing a mathematical task, or (4) performing no additional task. We classified the channel-averaged HD-EMG signals and the cumulative spike train (CST) of motor-units using a filter bank and a linear classifier. We found that in some subjects, the mental task can be classified from the channel-averaged HD-EMG signals and the CST in oscillations above 10 Hz. Furthermore, we found that these oscillation modulations are incompatible with a systematic and task-dependent change in force level. Our preliminary findings from a limited number of subjects suggest that some mental task-induced oscillations from supraspinal areas leak down to spinal motor neurons and are discriminable via EMG or CST signals at the innervated muscle.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信