Patrick Ofner, Meng-Jung Lee, Dario Farina, Carsten Mehring
{"title":"心理任务调制 10 赫兹以上的运动单元,是运动增强的潜在控制信号:一项初步研究。","authors":"Patrick Ofner, Meng-Jung Lee, Dario Farina, Carsten Mehring","doi":"10.1109/EMBC40787.2023.10340378","DOIUrl":null,"url":null,"abstract":"<p><p>Spinal motor neurons receive a wide range of input frequencies. However, only frequencies below ca. 10 Hz are directly translated into motor output. Frequency components above 10 Hz are filtered out by neural pathways and muscle dynamics. These higher frequency components may have an indirect effect on motor output, or may simply represent movement-independent oscillations that leak down from supraspinal areas such as the motor cortex. If movement-independent oscillations leak down from supraspinal areas, they could provide a potential control signal in movement augmentation applications. We analysed high-density electromyography (HD-EMG) signals from the tibialis anterior muscle while human subjects performed various mental tasks. The subjects performed an isometric dorsiflexion of the right foot at a low level of force while simultaneously (1) imagining a movement of the right foot, (2) imagining a movement of both hands, (3) performing a mathematical task, or (4) performing no additional task. We classified the channel-averaged HD-EMG signals and the cumulative spike train (CST) of motor-units using a filter bank and a linear classifier. We found that in some subjects, the mental task can be classified from the channel-averaged HD-EMG signals and the CST in oscillations above 10 Hz. Furthermore, we found that these oscillation modulations are incompatible with a systematic and task-dependent change in force level. Our preliminary findings from a limited number of subjects suggest that some mental task-induced oscillations from supraspinal areas leak down to spinal motor neurons and are discriminable via EMG or CST signals at the innervated muscle.</p>","PeriodicalId":72237,"journal":{"name":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","volume":"2023 ","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mental Tasks Modulate Motor-Units Above 10 Hz and are a Potential Control Signal for Movement Augmentation: a Preliminary Study.\",\"authors\":\"Patrick Ofner, Meng-Jung Lee, Dario Farina, Carsten Mehring\",\"doi\":\"10.1109/EMBC40787.2023.10340378\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Spinal motor neurons receive a wide range of input frequencies. However, only frequencies below ca. 10 Hz are directly translated into motor output. Frequency components above 10 Hz are filtered out by neural pathways and muscle dynamics. These higher frequency components may have an indirect effect on motor output, or may simply represent movement-independent oscillations that leak down from supraspinal areas such as the motor cortex. If movement-independent oscillations leak down from supraspinal areas, they could provide a potential control signal in movement augmentation applications. We analysed high-density electromyography (HD-EMG) signals from the tibialis anterior muscle while human subjects performed various mental tasks. The subjects performed an isometric dorsiflexion of the right foot at a low level of force while simultaneously (1) imagining a movement of the right foot, (2) imagining a movement of both hands, (3) performing a mathematical task, or (4) performing no additional task. We classified the channel-averaged HD-EMG signals and the cumulative spike train (CST) of motor-units using a filter bank and a linear classifier. We found that in some subjects, the mental task can be classified from the channel-averaged HD-EMG signals and the CST in oscillations above 10 Hz. Furthermore, we found that these oscillation modulations are incompatible with a systematic and task-dependent change in force level. Our preliminary findings from a limited number of subjects suggest that some mental task-induced oscillations from supraspinal areas leak down to spinal motor neurons and are discriminable via EMG or CST signals at the innervated muscle.</p>\",\"PeriodicalId\":72237,\"journal\":{\"name\":\"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference\",\"volume\":\"2023 \",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EMBC40787.2023.10340378\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMBC40787.2023.10340378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mental Tasks Modulate Motor-Units Above 10 Hz and are a Potential Control Signal for Movement Augmentation: a Preliminary Study.
Spinal motor neurons receive a wide range of input frequencies. However, only frequencies below ca. 10 Hz are directly translated into motor output. Frequency components above 10 Hz are filtered out by neural pathways and muscle dynamics. These higher frequency components may have an indirect effect on motor output, or may simply represent movement-independent oscillations that leak down from supraspinal areas such as the motor cortex. If movement-independent oscillations leak down from supraspinal areas, they could provide a potential control signal in movement augmentation applications. We analysed high-density electromyography (HD-EMG) signals from the tibialis anterior muscle while human subjects performed various mental tasks. The subjects performed an isometric dorsiflexion of the right foot at a low level of force while simultaneously (1) imagining a movement of the right foot, (2) imagining a movement of both hands, (3) performing a mathematical task, or (4) performing no additional task. We classified the channel-averaged HD-EMG signals and the cumulative spike train (CST) of motor-units using a filter bank and a linear classifier. We found that in some subjects, the mental task can be classified from the channel-averaged HD-EMG signals and the CST in oscillations above 10 Hz. Furthermore, we found that these oscillation modulations are incompatible with a systematic and task-dependent change in force level. Our preliminary findings from a limited number of subjects suggest that some mental task-induced oscillations from supraspinal areas leak down to spinal motor neurons and are discriminable via EMG or CST signals at the innervated muscle.