对不同结构的定制 3D 打印骨支架进行计算流体动力学分析。

Ourania Ntousi, Maria Roumpi, Panagiotis Siogkas, Despoina Deligianni, Dimitrios I Fotiadis
{"title":"对不同结构的定制 3D 打印骨支架进行计算流体动力学分析。","authors":"Ourania Ntousi, Maria Roumpi, Panagiotis Siogkas, Despoina Deligianni, Dimitrios I Fotiadis","doi":"10.1109/EMBC40787.2023.10340034","DOIUrl":null,"url":null,"abstract":"<p><p>Through the recent years, tissue engineering has been proven as a solid substitute of autografts in the stimulation of bone tissue regeneration, through the development of three dimensional (3D) porous matrices, commonly known as scaffolds. In this work, we analysed two scaffold structures with 500μm pore size, by performing computational fluid dynamics simulations, to compare permeability, Wall Shear Stress (WSS), velocity and pressure distributions. Taking into account those parameters the geometry named as \"PCL-50\" was the best to anticipate showing a superior performance in supporting cell growth due to the improved flow characteristics in the scaffold.Clinical Relevance- Bone defects that require invasive surgical treatment with high risks in terms of success and effectiveness. Bone tissue engineering (BTE) in combination with the use of computational fluid dynamics (CFD) analysis tools aim to assist in designing optimal scaffolds that better promote bone growth and repair. The fluid dynamic characteristics of a porous scaffold plays a vital role in cell viability and cell growth, affecting the osteogenic performance of the scaffold.</p>","PeriodicalId":72237,"journal":{"name":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational Fluid Dynamic Analysis of customised 3D-printed bone scaffolds with different architectures.\",\"authors\":\"Ourania Ntousi, Maria Roumpi, Panagiotis Siogkas, Despoina Deligianni, Dimitrios I Fotiadis\",\"doi\":\"10.1109/EMBC40787.2023.10340034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Through the recent years, tissue engineering has been proven as a solid substitute of autografts in the stimulation of bone tissue regeneration, through the development of three dimensional (3D) porous matrices, commonly known as scaffolds. In this work, we analysed two scaffold structures with 500μm pore size, by performing computational fluid dynamics simulations, to compare permeability, Wall Shear Stress (WSS), velocity and pressure distributions. Taking into account those parameters the geometry named as \\\"PCL-50\\\" was the best to anticipate showing a superior performance in supporting cell growth due to the improved flow characteristics in the scaffold.Clinical Relevance- Bone defects that require invasive surgical treatment with high risks in terms of success and effectiveness. Bone tissue engineering (BTE) in combination with the use of computational fluid dynamics (CFD) analysis tools aim to assist in designing optimal scaffolds that better promote bone growth and repair. The fluid dynamic characteristics of a porous scaffold plays a vital role in cell viability and cell growth, affecting the osteogenic performance of the scaffold.</p>\",\"PeriodicalId\":72237,\"journal\":{\"name\":\"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EMBC40787.2023.10340034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMBC40787.2023.10340034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,通过开发三维(3D)多孔基质(俗称支架),组织工程已被证明是刺激骨组织再生的自体移植物的可靠替代品。在这项工作中,我们通过计算流体动力学模拟分析了两种孔径为 500 微米的支架结构,比较了渗透性、壁剪应力(WSS)、速度和压力分布。考虑到这些参数,被命名为 "PCL-50 "的几何形状是最佳选择,由于支架的流动特性得到改善,它在支持细胞生长方面表现出色。骨组织工程(BTE)与计算流体动力学(CFD)分析工具的结合使用旨在协助设计最佳支架,更好地促进骨生长和修复。多孔支架的流体动力学特性对细胞活力和细胞生长起着至关重要的作用,影响着支架的成骨性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computational Fluid Dynamic Analysis of customised 3D-printed bone scaffolds with different architectures.

Through the recent years, tissue engineering has been proven as a solid substitute of autografts in the stimulation of bone tissue regeneration, through the development of three dimensional (3D) porous matrices, commonly known as scaffolds. In this work, we analysed two scaffold structures with 500μm pore size, by performing computational fluid dynamics simulations, to compare permeability, Wall Shear Stress (WSS), velocity and pressure distributions. Taking into account those parameters the geometry named as "PCL-50" was the best to anticipate showing a superior performance in supporting cell growth due to the improved flow characteristics in the scaffold.Clinical Relevance- Bone defects that require invasive surgical treatment with high risks in terms of success and effectiveness. Bone tissue engineering (BTE) in combination with the use of computational fluid dynamics (CFD) analysis tools aim to assist in designing optimal scaffolds that better promote bone growth and repair. The fluid dynamic characteristics of a porous scaffold plays a vital role in cell viability and cell growth, affecting the osteogenic performance of the scaffold.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信