实施可扩展的机床实时监控平台

IF 8.2 1区 计算机科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Endika Tapia , Unai Lopez-Novoa , Leonardo Sastoque-Pinilla , Luis Norberto López-de-Lacalle
{"title":"实施可扩展的机床实时监控平台","authors":"Endika Tapia ,&nbsp;Unai Lopez-Novoa ,&nbsp;Leonardo Sastoque-Pinilla ,&nbsp;Luis Norberto López-de-Lacalle","doi":"10.1016/j.compind.2023.104065","DOIUrl":null,"url":null,"abstract":"<div><p>In the new hyper connected factories, data gathering, and prediction models are key to keeping both productivity and piece quality. This paper presents a software platform that monitors and detects outliers in an industrial manufacturing process using scalable software tools. The platform collects data from a machine, processes it, and displays visualizations in a dashboard along with the results. A statistical method is used to detect outliers in the manufacturing process. The performance of the platform is assessed in two ways: firstly by monitoring a five-axis milling machine and secondly, using simulated tests. Former tests prove the suitability of the platform and reveal the issues that arise in a real environment, and latter tests prove the scalability of the platform with higher data processing needs than the previous ones.</p></div>","PeriodicalId":55219,"journal":{"name":"Computers in Industry","volume":"155 ","pages":"Article 104065"},"PeriodicalIF":8.2000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0166361523002154/pdfft?md5=075be02aa14bfe05041d47bded655429&pid=1-s2.0-S0166361523002154-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Implementation of a scalable platform for real-time monitoring of machine tools\",\"authors\":\"Endika Tapia ,&nbsp;Unai Lopez-Novoa ,&nbsp;Leonardo Sastoque-Pinilla ,&nbsp;Luis Norberto López-de-Lacalle\",\"doi\":\"10.1016/j.compind.2023.104065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the new hyper connected factories, data gathering, and prediction models are key to keeping both productivity and piece quality. This paper presents a software platform that monitors and detects outliers in an industrial manufacturing process using scalable software tools. The platform collects data from a machine, processes it, and displays visualizations in a dashboard along with the results. A statistical method is used to detect outliers in the manufacturing process. The performance of the platform is assessed in two ways: firstly by monitoring a five-axis milling machine and secondly, using simulated tests. Former tests prove the suitability of the platform and reveal the issues that arise in a real environment, and latter tests prove the scalability of the platform with higher data processing needs than the previous ones.</p></div>\",\"PeriodicalId\":55219,\"journal\":{\"name\":\"Computers in Industry\",\"volume\":\"155 \",\"pages\":\"Article 104065\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2023-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0166361523002154/pdfft?md5=075be02aa14bfe05041d47bded655429&pid=1-s2.0-S0166361523002154-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers in Industry\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166361523002154\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in Industry","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166361523002154","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在新的超级互联工厂中,数据收集和预测模型是保持生产率和产品质量的关键。本文介绍了一个软件平台,该平台利用可扩展的软件工具监控和检测工业生产过程中的异常值。该平台从机器中收集数据,进行处理,并在仪表板中显示可视化结果。统计方法用于检测制造过程中的异常值。该平台的性能通过两种方式进行评估:首先是监控五轴铣床,其次是模拟测试。前一种测试证明了平台的适用性,并揭示了在真实环境中出现的问题;后一种测试证明了平台的可扩展性,其数据处理需求高于前一种测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Implementation of a scalable platform for real-time monitoring of machine tools

In the new hyper connected factories, data gathering, and prediction models are key to keeping both productivity and piece quality. This paper presents a software platform that monitors and detects outliers in an industrial manufacturing process using scalable software tools. The platform collects data from a machine, processes it, and displays visualizations in a dashboard along with the results. A statistical method is used to detect outliers in the manufacturing process. The performance of the platform is assessed in two ways: firstly by monitoring a five-axis milling machine and secondly, using simulated tests. Former tests prove the suitability of the platform and reveal the issues that arise in a real environment, and latter tests prove the scalability of the platform with higher data processing needs than the previous ones.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers in Industry
Computers in Industry 工程技术-计算机:跨学科应用
CiteScore
18.90
自引率
8.00%
发文量
152
审稿时长
22 days
期刊介绍: The objective of Computers in Industry is to present original, high-quality, application-oriented research papers that: • Illuminate emerging trends and possibilities in the utilization of Information and Communication Technology in industry; • Establish connections or integrations across various technology domains within the expansive realm of computer applications for industry; • Foster connections or integrations across diverse application areas of ICT in industry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信