EPAG:基于位置嵌入的持续学习机制的新型增强移动识别算法

Hao Wen , Jie Wang , Xiaodong Qiao
{"title":"EPAG:基于位置嵌入的持续学习机制的新型增强移动识别算法","authors":"Hao Wen ,&nbsp;Jie Wang ,&nbsp;Xiaodong Qiao","doi":"10.1016/j.nlp.2023.100049","DOIUrl":null,"url":null,"abstract":"<div><p>The identification of abstracts plays a vital role in efficiently locating the content and providing clarity to the article. Existing algorithms for move recognition exhibit a deficiency in their capacity to acquire word adjacent position information when word changes in Chinese expressions to obtain contextual semantics changes. This paper introduces EPAG: a novel enhanced move recognition algorithm with the improved pre-trained framework and downstream model for unstructured abstracts of Chinese scientific and technological papers. The proposed algorithm first performs data segmentation and vocabulary training. The EPAG framework is leveraged to incorporate word positional information, facilitating deep semantic learning and targeted feature extraction. Experimental results demonstrate that the proposed algorithm achieves 13.37% higher accuracy on the split dataset than on the original dataset and a 7.55% improvement in accuracy over the basic comparison model.</p></div>","PeriodicalId":100944,"journal":{"name":"Natural Language Processing Journal","volume":"6 ","pages":"Article 100049"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949719123000468/pdfft?md5=e65848012bae8aeab0939b4bcb600659&pid=1-s2.0-S2949719123000468-main.pdf","citationCount":"0","resultStr":"{\"title\":\"EPAG: A novel enhanced move recognition algorithm based on continuous learning mechanism with positional embedding\",\"authors\":\"Hao Wen ,&nbsp;Jie Wang ,&nbsp;Xiaodong Qiao\",\"doi\":\"10.1016/j.nlp.2023.100049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The identification of abstracts plays a vital role in efficiently locating the content and providing clarity to the article. Existing algorithms for move recognition exhibit a deficiency in their capacity to acquire word adjacent position information when word changes in Chinese expressions to obtain contextual semantics changes. This paper introduces EPAG: a novel enhanced move recognition algorithm with the improved pre-trained framework and downstream model for unstructured abstracts of Chinese scientific and technological papers. The proposed algorithm first performs data segmentation and vocabulary training. The EPAG framework is leveraged to incorporate word positional information, facilitating deep semantic learning and targeted feature extraction. Experimental results demonstrate that the proposed algorithm achieves 13.37% higher accuracy on the split dataset than on the original dataset and a 7.55% improvement in accuracy over the basic comparison model.</p></div>\",\"PeriodicalId\":100944,\"journal\":{\"name\":\"Natural Language Processing Journal\",\"volume\":\"6 \",\"pages\":\"Article 100049\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2949719123000468/pdfft?md5=e65848012bae8aeab0939b4bcb600659&pid=1-s2.0-S2949719123000468-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Language Processing Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949719123000468\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Language Processing Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949719123000468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要的识别在有效定位文章内容和提供清晰度方面起着至关重要的作用。现有的移动识别算法在中文表达中单词变化时获取单词相邻位置信息以获得上下文语义变化的能力方面存在不足。本文介绍了 EPAG:一种新型的增强移动识别算法,该算法采用改进的预训练框架和下游模型,适用于非结构化中文科技论文摘要。该算法首先进行数据分割和词汇训练。利用 EPAG 框架纳入词的位置信息,促进深度语义学习和有针对性的特征提取。实验结果表明,与原始数据集相比,拟议算法在分割数据集上的准确率提高了 13.37%,与基本比较模型相比,准确率提高了 7.55%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EPAG: A novel enhanced move recognition algorithm based on continuous learning mechanism with positional embedding

The identification of abstracts plays a vital role in efficiently locating the content and providing clarity to the article. Existing algorithms for move recognition exhibit a deficiency in their capacity to acquire word adjacent position information when word changes in Chinese expressions to obtain contextual semantics changes. This paper introduces EPAG: a novel enhanced move recognition algorithm with the improved pre-trained framework and downstream model for unstructured abstracts of Chinese scientific and technological papers. The proposed algorithm first performs data segmentation and vocabulary training. The EPAG framework is leveraged to incorporate word positional information, facilitating deep semantic learning and targeted feature extraction. Experimental results demonstrate that the proposed algorithm achieves 13.37% higher accuracy on the split dataset than on the original dataset and a 7.55% improvement in accuracy over the basic comparison model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信