{"title":"UaMC:通过多模态图学习和语境挖掘实现用户增强对话推荐","authors":"Siqi Fan, Yequan Wang, Xiaobing Pang, Lisi Chen, Peng Han, Shuo Shang","doi":"10.1007/s11280-023-01219-2","DOIUrl":null,"url":null,"abstract":"<p>Conversation Recommender System (CRS) engage in multi-turn conversations with users and provide recommendations through responses. As user preferences evolve dynamically during the course of the conversation, it is crucial to understand natural interaction utterances to capture the user’s dynamic preference accurately. Existing research has focused on obtaining user preference at the entity level and natural language level, and bridging the semantic gap through techniques such as knowledge augmentation, semantic fusion, and prompt learning. However, the representation of each level remains under-explored. At the entity level, user preference is typically extracted from Knowledge Graphs, while other modal data is often overlooked. At the natural language level, user representation is obtained from a fixed language model, disregarding the relationships between different contexts. In this paper, we propose <u>U</u>ser-<u>a</u>ugmented Conversation Recommendation via <u>M</u>ulti-modal graph learning and <u>C</u>ontext Mining (<b>UaMC</b>) to address above limitations. At the entity level, we enrich user preference by leveraging multi-modal knowledge. At the natural language level, we employ contrast learning to extract user preference from similar contexts. By incorporating the enhanced representation of user preference, we utilize prompt learning techniques to generate responses related to recommended items. We conduct experiments on two public CRS benchmarks, demonstrating the effectiveness of our approach in both the recommendation and conversation subtasks.</p>","PeriodicalId":501180,"journal":{"name":"World Wide Web","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"UaMC: user-augmented conversation recommendation via multi-modal graph learning and context mining\",\"authors\":\"Siqi Fan, Yequan Wang, Xiaobing Pang, Lisi Chen, Peng Han, Shuo Shang\",\"doi\":\"10.1007/s11280-023-01219-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Conversation Recommender System (CRS) engage in multi-turn conversations with users and provide recommendations through responses. As user preferences evolve dynamically during the course of the conversation, it is crucial to understand natural interaction utterances to capture the user’s dynamic preference accurately. Existing research has focused on obtaining user preference at the entity level and natural language level, and bridging the semantic gap through techniques such as knowledge augmentation, semantic fusion, and prompt learning. However, the representation of each level remains under-explored. At the entity level, user preference is typically extracted from Knowledge Graphs, while other modal data is often overlooked. At the natural language level, user representation is obtained from a fixed language model, disregarding the relationships between different contexts. In this paper, we propose <u>U</u>ser-<u>a</u>ugmented Conversation Recommendation via <u>M</u>ulti-modal graph learning and <u>C</u>ontext Mining (<b>UaMC</b>) to address above limitations. At the entity level, we enrich user preference by leveraging multi-modal knowledge. At the natural language level, we employ contrast learning to extract user preference from similar contexts. By incorporating the enhanced representation of user preference, we utilize prompt learning techniques to generate responses related to recommended items. We conduct experiments on two public CRS benchmarks, demonstrating the effectiveness of our approach in both the recommendation and conversation subtasks.</p>\",\"PeriodicalId\":501180,\"journal\":{\"name\":\"World Wide Web\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Wide Web\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11280-023-01219-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Wide Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11280-023-01219-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
UaMC: user-augmented conversation recommendation via multi-modal graph learning and context mining
Conversation Recommender System (CRS) engage in multi-turn conversations with users and provide recommendations through responses. As user preferences evolve dynamically during the course of the conversation, it is crucial to understand natural interaction utterances to capture the user’s dynamic preference accurately. Existing research has focused on obtaining user preference at the entity level and natural language level, and bridging the semantic gap through techniques such as knowledge augmentation, semantic fusion, and prompt learning. However, the representation of each level remains under-explored. At the entity level, user preference is typically extracted from Knowledge Graphs, while other modal data is often overlooked. At the natural language level, user representation is obtained from a fixed language model, disregarding the relationships between different contexts. In this paper, we propose User-augmented Conversation Recommendation via Multi-modal graph learning and Context Mining (UaMC) to address above limitations. At the entity level, we enrich user preference by leveraging multi-modal knowledge. At the natural language level, we employ contrast learning to extract user preference from similar contexts. By incorporating the enhanced representation of user preference, we utilize prompt learning techniques to generate responses related to recommended items. We conduct experiments on two public CRS benchmarks, demonstrating the effectiveness of our approach in both the recommendation and conversation subtasks.