混合变量约束黑箱优化问题的求解方法

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Marie-Ange Dahito, Laurent Genest, Alessandro Maddaloni, José Neto
{"title":"混合变量约束黑箱优化问题的求解方法","authors":"Marie-Ange Dahito, Laurent Genest, Alessandro Maddaloni, José Neto","doi":"10.1007/s11081-023-09874-0","DOIUrl":null,"url":null,"abstract":"<p>Many real-world application problems encountered in industry have no analytical formulation, that is they are blackbox optimization problems, and often make use of expensive numerical simulations. We propose a new blackbox optimization algorithm named BOA to solve mixed-variable constrained blackbox optimization problems where the evaluations of the blackbox functions are computationally expensive. The algorithm is two-phased: in the first phase it looks for a feasible solution and in the second phase it tries to find other feasible solutions with better objective values. Our implementation of the algorithm constructs surrogates approximating the blackbox functions and defines subproblems based on these models. The open-source blackbox optimization solver NOMAD is used for the resolution of the subproblems. Experiments performed on instances stemming from the literature and two automotive applications encountered at Stellantis show promising results of BOA in particular with cubic RBF models. The latter generally outperforms two surrogate-assisted NOMAD variants on the considered problems.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A solution method for mixed-variable constrained blackbox optimization problems\",\"authors\":\"Marie-Ange Dahito, Laurent Genest, Alessandro Maddaloni, José Neto\",\"doi\":\"10.1007/s11081-023-09874-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Many real-world application problems encountered in industry have no analytical formulation, that is they are blackbox optimization problems, and often make use of expensive numerical simulations. We propose a new blackbox optimization algorithm named BOA to solve mixed-variable constrained blackbox optimization problems where the evaluations of the blackbox functions are computationally expensive. The algorithm is two-phased: in the first phase it looks for a feasible solution and in the second phase it tries to find other feasible solutions with better objective values. Our implementation of the algorithm constructs surrogates approximating the blackbox functions and defines subproblems based on these models. The open-source blackbox optimization solver NOMAD is used for the resolution of the subproblems. Experiments performed on instances stemming from the literature and two automotive applications encountered at Stellantis show promising results of BOA in particular with cubic RBF models. The latter generally outperforms two surrogate-assisted NOMAD variants on the considered problems.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11081-023-09874-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11081-023-09874-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

在工业领域遇到的许多实际应用问题都没有分析表述,即属于黑箱优化问题,通常需要使用昂贵的数值模拟。我们提出了一种名为 BOA 的新黑箱优化算法,用于解决混合变量约束黑箱优化问题,在这种问题中,黑箱函数的求值计算代价高昂。该算法分为两个阶段:第一阶段寻找可行解,第二阶段试图找到目标值更好的其他可行解。我们的算法实现构建了近似黑盒函数的代用模型,并根据这些模型定义了子问题。子问题的解决使用开源黑盒优化求解器 NOMAD。在文献实例和 Stellantis 遇到的两个汽车应用实例上进行的实验表明,BOA 特别是立方 RBF 模型的结果很有前途。在所考虑的问题上,后者总体上优于两种代理辅助 NOMAD 变体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A solution method for mixed-variable constrained blackbox optimization problems

A solution method for mixed-variable constrained blackbox optimization problems

Many real-world application problems encountered in industry have no analytical formulation, that is they are blackbox optimization problems, and often make use of expensive numerical simulations. We propose a new blackbox optimization algorithm named BOA to solve mixed-variable constrained blackbox optimization problems where the evaluations of the blackbox functions are computationally expensive. The algorithm is two-phased: in the first phase it looks for a feasible solution and in the second phase it tries to find other feasible solutions with better objective values. Our implementation of the algorithm constructs surrogates approximating the blackbox functions and defines subproblems based on these models. The open-source blackbox optimization solver NOMAD is used for the resolution of the subproblems. Experiments performed on instances stemming from the literature and two automotive applications encountered at Stellantis show promising results of BOA in particular with cubic RBF models. The latter generally outperforms two surrogate-assisted NOMAD variants on the considered problems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信