人性化机器人辅助导航

IF 2.3 4区 计算机科学 Q3 ROBOTICS
{"title":"人性化机器人辅助导航","authors":"","doi":"10.1007/s11370-023-00495-1","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Robot-assisted navigation is a perfect example of a class of applications requiring flexible control approaches. When the human is reliable, the robot should concede space to their initiative. When the human makes inappropriate choices the robot controller should kick-in guiding them towards safer paths. Shared authority control is a way to achieve this behaviour by deciding online how much of the authority should be given to the human and how much should be retained by the robot. An open problem is how to evaluate the appropriateness of the human’s choices. One possible way is to consider the deviation from an ideal path computed by the robot. This choice is certainly safe and efficient, but it emphasises the importance of the robot’s decision and relegates the human to a secondary role. In this paper, we propose a different paradigm: a human’s behaviour is correct if, at every time, it bears a close resemblance to what other humans do in similar situations. This idea is implemented through the combination of machine learning and adaptive control. The map of the environment is decomposed into a grid. In each cell, we classify the possible motions that the human executes. We use a neural network classifier to classify the current motion, and the probability score is used as a hyperparameter in the control to vary the amount of intervention. The experiments collected for the paper show the feasibility of the idea. A qualitative evaluation, done by surveying the users after they have tested the robot, shows that the participants preferred our control method over a state-of-the-art visco-elastic control.</p>","PeriodicalId":48813,"journal":{"name":"Intelligent Service Robotics","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Humanising robot-assisted navigation\",\"authors\":\"\",\"doi\":\"10.1007/s11370-023-00495-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>Robot-assisted navigation is a perfect example of a class of applications requiring flexible control approaches. When the human is reliable, the robot should concede space to their initiative. When the human makes inappropriate choices the robot controller should kick-in guiding them towards safer paths. Shared authority control is a way to achieve this behaviour by deciding online how much of the authority should be given to the human and how much should be retained by the robot. An open problem is how to evaluate the appropriateness of the human’s choices. One possible way is to consider the deviation from an ideal path computed by the robot. This choice is certainly safe and efficient, but it emphasises the importance of the robot’s decision and relegates the human to a secondary role. In this paper, we propose a different paradigm: a human’s behaviour is correct if, at every time, it bears a close resemblance to what other humans do in similar situations. This idea is implemented through the combination of machine learning and adaptive control. The map of the environment is decomposed into a grid. In each cell, we classify the possible motions that the human executes. We use a neural network classifier to classify the current motion, and the probability score is used as a hyperparameter in the control to vary the amount of intervention. The experiments collected for the paper show the feasibility of the idea. A qualitative evaluation, done by surveying the users after they have tested the robot, shows that the participants preferred our control method over a state-of-the-art visco-elastic control.</p>\",\"PeriodicalId\":48813,\"journal\":{\"name\":\"Intelligent Service Robotics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligent Service Robotics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11370-023-00495-1\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Service Robotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11370-023-00495-1","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 机器人辅助导航是一类需要灵活控制方法的应用的完美范例。当人类可靠时,机器人应为其主动性让出空间。当人类做出不恰当的选择时,机器人控制器就应启动,引导他们走向更安全的路径。共享权限控制是实现这种行为的一种方法,它可以在线决定将多少权限交给人类,多少权限由机器人保留。一个悬而未决的问题是如何评估人类选择的适当性。一种可能的方法是考虑与机器人计算出的理想路径的偏差。这种选择当然既安全又高效,但它强调了机器人决策的重要性,将人类置于次要地位。在本文中,我们提出了一种不同的模式:如果人类的行为在任何时候都与其他人类在类似情况下的行为非常相似,那么人类的行为就是正确的。这一想法是通过机器学习和自适应控制相结合来实现的。环境地图被分解成一个个网格。在每个单元格中,我们对人类可能执行的动作进行分类。我们使用神经网络分类器对当前运动进行分类,并将概率分数作为控制中的超参数,以改变干预量。本文收集的实验结果表明了这一想法的可行性。在用户测试了机器人之后,我们对他们进行了定性评估,结果表明,与最先进的粘弹性控制相比,用户更喜欢我们的控制方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Humanising robot-assisted navigation

Abstract

Robot-assisted navigation is a perfect example of a class of applications requiring flexible control approaches. When the human is reliable, the robot should concede space to their initiative. When the human makes inappropriate choices the robot controller should kick-in guiding them towards safer paths. Shared authority control is a way to achieve this behaviour by deciding online how much of the authority should be given to the human and how much should be retained by the robot. An open problem is how to evaluate the appropriateness of the human’s choices. One possible way is to consider the deviation from an ideal path computed by the robot. This choice is certainly safe and efficient, but it emphasises the importance of the robot’s decision and relegates the human to a secondary role. In this paper, we propose a different paradigm: a human’s behaviour is correct if, at every time, it bears a close resemblance to what other humans do in similar situations. This idea is implemented through the combination of machine learning and adaptive control. The map of the environment is decomposed into a grid. In each cell, we classify the possible motions that the human executes. We use a neural network classifier to classify the current motion, and the probability score is used as a hyperparameter in the control to vary the amount of intervention. The experiments collected for the paper show the feasibility of the idea. A qualitative evaluation, done by surveying the users after they have tested the robot, shows that the participants preferred our control method over a state-of-the-art visco-elastic control.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.70
自引率
4.00%
发文量
46
期刊介绍: The journal directs special attention to the emerging significance of integrating robotics with information technology and cognitive science (such as ubiquitous and adaptive computing,information integration in a distributed environment, and cognitive modelling for human-robot interaction), which spurs innovation toward a new multi-dimensional robotic service to humans. The journal intends to capture and archive this emerging yet significant advancement in the field of intelligent service robotics. The journal will publish original papers of innovative ideas and concepts, new discoveries and improvements, as well as novel applications and business models which are related to the field of intelligent service robotics described above and are proven to be of high quality. The areas that the Journal will cover include, but are not limited to: Intelligent robots serving humans in daily life or in a hazardous environment, such as home or personal service robots, entertainment robots, education robots, medical robots, healthcare and rehabilitation robots, and rescue robots (Service Robotics); Intelligent robotic functions in the form of embedded systems for applications to, for example, intelligent space, intelligent vehicles and transportation systems, intelligent manufacturing systems, and intelligent medical facilities (Embedded Robotics); The integration of robotics with network technologies, generating such services and solutions as distributed robots, distance robotic education-aides, and virtual laboratories or museums (Networked Robotics).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信