{"title":"网格上的后向随机差分方程在市场均衡分析中的应用","authors":"Masaaki Fukasawa, Takashi Sato, Jun Sekine","doi":"arxiv-2312.10883","DOIUrl":null,"url":null,"abstract":"We study backward stochastic difference equations (BS{\\Delta}E) driven by a\nd-dimensional stochastic process on a lattice whose increments have only d + 1\npossible values that generates the lattice. Regarding the driving process as a\nd dimensional asset price process, we give applications to an optimal\ninvestment problem and a market equilibrium analysis, where utility functionals\nare defined through BS{\\Delta}E.","PeriodicalId":501372,"journal":{"name":"arXiv - QuantFin - General Finance","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Backward stochastic difference equations on lattices with application to market equilibrium analysis\",\"authors\":\"Masaaki Fukasawa, Takashi Sato, Jun Sekine\",\"doi\":\"arxiv-2312.10883\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study backward stochastic difference equations (BS{\\\\Delta}E) driven by a\\nd-dimensional stochastic process on a lattice whose increments have only d + 1\\npossible values that generates the lattice. Regarding the driving process as a\\nd dimensional asset price process, we give applications to an optimal\\ninvestment problem and a market equilibrium analysis, where utility functionals\\nare defined through BS{\\\\Delta}E.\",\"PeriodicalId\":501372,\"journal\":{\"name\":\"arXiv - QuantFin - General Finance\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - General Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2312.10883\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - General Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.10883","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们研究了由网格上的一维随机过程驱动的后向随机差分方程(BS{\Delta}E),该网格的增量只有 d + 1 个可能值。将驱动过程视为一维资产价格过程,我们给出了最优投资问题和市场均衡分析的应用,其中效用函数是通过 BS{\Delta}E 来定义的。
Backward stochastic difference equations on lattices with application to market equilibrium analysis
We study backward stochastic difference equations (BS{\Delta}E) driven by a
d-dimensional stochastic process on a lattice whose increments have only d + 1
possible values that generates the lattice. Regarding the driving process as a
d dimensional asset price process, we give applications to an optimal
investment problem and a market equilibrium analysis, where utility functionals
are defined through BS{\Delta}E.