II 型超导体中涡旋线与边界重新连接的梯度分布图

IF 1.1 3区 数学 Q1 MATHEMATICS
Yi C. Huang, Hatem Zaag
{"title":"II 型超导体中涡旋线与边界重新连接的梯度分布图","authors":"Yi C. Huang, Hatem Zaag","doi":"10.1007/s00028-023-00932-9","DOIUrl":null,"url":null,"abstract":"<p>In a recent work, Duong, Ghoul and Zaag determined the gradient profile for blowup solutions of standard semilinear heat equation with power nonlinearities in the (supposed to be) generic case. Their method refines the constructive techniques introduced by Bricmont and Kupiainen and further developed by Merle and Zaag. In this paper, we extend their refinement to the problem about the reconnection of vortex lines with the boundary in a type-II superconductor under planar approximation, a physical model derived by Chapman, Hunton and Ockendon featuring the finite time quenching for the nonlinear heat equation </p><span>$$\\begin{aligned} \\frac{\\partial h}{\\partial t}=\\frac{\\partial ^2 h}{\\partial x^2}+e^{-h}-\\frac{1}{h^\\beta },\\quad \\beta &gt;0 \\end{aligned}$$</span><p>subject to initial boundary value conditions </p><span>$$\\begin{aligned} h(\\cdot ,0)=h_0&gt;0,\\quad h(\\pm 1,t)=1. \\end{aligned}$$</span><p>We derive the intermediate extinction profile with refined asymptotics, and with extinction time <i>T</i> and extinction point 0, the gradient profile behaves as <span>\\(x\\rightarrow 0\\)</span> like </p><span>$$\\begin{aligned} \\lim _{t\\rightarrow T}\\,(\\nabla h)(x,t)\\quad \\sim \\quad \\frac{1}{\\sqrt{2\\beta }}\\frac{x}{|x|}\\frac{1}{\\sqrt{|\\log |x||}} \\left[ \\frac{(\\beta +1)^2}{8\\beta }\\frac{|x|^2}{|\\log |x||}\\right] ^{\\frac{1}{\\beta +1}-\\frac{1}{2}}, \\end{aligned}$$</span><p>agreeing with the gradient of the extinction profile previously derived by Merle and Zaag. Our result holds with general boundary conditions and in higher dimensions.</p>","PeriodicalId":51083,"journal":{"name":"Journal of Evolution Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gradient profile for the reconnection of vortex lines with the boundary in type-II superconductors\",\"authors\":\"Yi C. Huang, Hatem Zaag\",\"doi\":\"10.1007/s00028-023-00932-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In a recent work, Duong, Ghoul and Zaag determined the gradient profile for blowup solutions of standard semilinear heat equation with power nonlinearities in the (supposed to be) generic case. Their method refines the constructive techniques introduced by Bricmont and Kupiainen and further developed by Merle and Zaag. In this paper, we extend their refinement to the problem about the reconnection of vortex lines with the boundary in a type-II superconductor under planar approximation, a physical model derived by Chapman, Hunton and Ockendon featuring the finite time quenching for the nonlinear heat equation </p><span>$$\\\\begin{aligned} \\\\frac{\\\\partial h}{\\\\partial t}=\\\\frac{\\\\partial ^2 h}{\\\\partial x^2}+e^{-h}-\\\\frac{1}{h^\\\\beta },\\\\quad \\\\beta &gt;0 \\\\end{aligned}$$</span><p>subject to initial boundary value conditions </p><span>$$\\\\begin{aligned} h(\\\\cdot ,0)=h_0&gt;0,\\\\quad h(\\\\pm 1,t)=1. \\\\end{aligned}$$</span><p>We derive the intermediate extinction profile with refined asymptotics, and with extinction time <i>T</i> and extinction point 0, the gradient profile behaves as <span>\\\\(x\\\\rightarrow 0\\\\)</span> like </p><span>$$\\\\begin{aligned} \\\\lim _{t\\\\rightarrow T}\\\\,(\\\\nabla h)(x,t)\\\\quad \\\\sim \\\\quad \\\\frac{1}{\\\\sqrt{2\\\\beta }}\\\\frac{x}{|x|}\\\\frac{1}{\\\\sqrt{|\\\\log |x||}} \\\\left[ \\\\frac{(\\\\beta +1)^2}{8\\\\beta }\\\\frac{|x|^2}{|\\\\log |x||}\\\\right] ^{\\\\frac{1}{\\\\beta +1}-\\\\frac{1}{2}}, \\\\end{aligned}$$</span><p>agreeing with the gradient of the extinction profile previously derived by Merle and Zaag. Our result holds with general boundary conditions and in higher dimensions.</p>\",\"PeriodicalId\":51083,\"journal\":{\"name\":\"Journal of Evolution Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Evolution Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00028-023-00932-9\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Evolution Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00028-023-00932-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在最近的一项研究中,Duong、Ghoul 和 Zaag 确定了(假定为)一般情况下具有幂非线性的标准半线性热方程炸裂解的梯度轮廓。他们的方法完善了由 Bricmont 和 Kupiainen 引入、由 Merle 和 Zaag 进一步发展的构造技术。在本文中,我们将他们的改进扩展到平面近似下的 II 型超导体中涡旋线与边界的再连接问题,这是一个由查普曼、亨通和奥肯登推导的物理模型,其特点是非线性热方程 $$\begin{aligned} 的有限时间淬火。\frac{partial h}{partial t}=/frac{partial ^2 h}{partial x^2}+e^{-h}-\frac{1}{h^\beta },\quad \beta >;0 end{aligned}$$受初始邊界值條件 $$\begin{aligned} h(\cdot ,0)=h_0>0,\quad h(\pm 1,t)=1.\end{aligned}$$We derive the intermediate extinction profile with refined asymptics, and with extinction time T and extinction point 0, the gradient profile behaves as \(x\rightarrow 0\) like $$\begin{aligned}。\lim _{t\rightarrow T}\,(\nabla h)(x,t)\quad \sim \quad \frac{1}{\sqrt{2\beta }}\frac{x}{|x|}\frac{1}{\sqrt{|log |x||}}\left[ \frac{(\beta +1)^2}{8\beta }\frac{|x|^2}{|log |x||}\right] ^{frac{1}{\beta+1}-\frac{1}{2}},end{aligned}$$与 Merle 和 Zaag 先前推导的消光曲线梯度一致。我们的结果在一般边界条件和更高维度下都成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gradient profile for the reconnection of vortex lines with the boundary in type-II superconductors

In a recent work, Duong, Ghoul and Zaag determined the gradient profile for blowup solutions of standard semilinear heat equation with power nonlinearities in the (supposed to be) generic case. Their method refines the constructive techniques introduced by Bricmont and Kupiainen and further developed by Merle and Zaag. In this paper, we extend their refinement to the problem about the reconnection of vortex lines with the boundary in a type-II superconductor under planar approximation, a physical model derived by Chapman, Hunton and Ockendon featuring the finite time quenching for the nonlinear heat equation

$$\begin{aligned} \frac{\partial h}{\partial t}=\frac{\partial ^2 h}{\partial x^2}+e^{-h}-\frac{1}{h^\beta },\quad \beta >0 \end{aligned}$$

subject to initial boundary value conditions

$$\begin{aligned} h(\cdot ,0)=h_0>0,\quad h(\pm 1,t)=1. \end{aligned}$$

We derive the intermediate extinction profile with refined asymptotics, and with extinction time T and extinction point 0, the gradient profile behaves as \(x\rightarrow 0\) like

$$\begin{aligned} \lim _{t\rightarrow T}\,(\nabla h)(x,t)\quad \sim \quad \frac{1}{\sqrt{2\beta }}\frac{x}{|x|}\frac{1}{\sqrt{|\log |x||}} \left[ \frac{(\beta +1)^2}{8\beta }\frac{|x|^2}{|\log |x||}\right] ^{\frac{1}{\beta +1}-\frac{1}{2}}, \end{aligned}$$

agreeing with the gradient of the extinction profile previously derived by Merle and Zaag. Our result holds with general boundary conditions and in higher dimensions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
7.10%
发文量
90
审稿时长
>12 weeks
期刊介绍: The Journal of Evolution Equations (JEE) publishes high-quality, peer-reviewed papers on equations dealing with time dependent systems and ranging from abstract theory to concrete applications. Research articles should contain new and important results. Survey articles on recent developments are also considered as important contributions to the field. Particular topics covered by the journal are: Linear and Nonlinear Semigroups Parabolic and Hyperbolic Partial Differential Equations Reaction Diffusion Equations Deterministic and Stochastic Control Systems Transport and Population Equations Volterra Equations Delay Equations Stochastic Processes and Dirichlet Forms Maximal Regularity and Functional Calculi Asymptotics and Qualitative Theory of Linear and Nonlinear Evolution Equations Evolution Equations in Mathematical Physics Elliptic Operators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信