{"title":"CMAIS-WOA:采用混沌映射和自适应迭代策略的改进型 WOA","authors":"Chao-Hsien Hsieh, Qing Zhang, Ya Xu, Ziyi Wang","doi":"10.1155/2023/8160121","DOIUrl":null,"url":null,"abstract":"This paper proposes an improved whale optimization algorithm with chaotic mapping and adaptive iteration strategy (CMAIS-WOA). This algorithm addresses the issues of the WOA algorithm that is prone to local optimal solutions with low stability. CMAIS-WOA utilizes chaotic mapping to enhance the diversity and coverage of the initial population. Also, it adaptively adjusts the weight values based on the current distribution of whale populations and the fitness of search agents. In addition, CMAIS-WOA uses an improved nonlinear convergence factor to adjust the breadth-first and depth-first search during the optimization process. The performance of the proposed CMAIS-WOA is evaluated by using 13 classical benchmark functions and IEEE CEC2014 test suite. The experimental results show that CMAIS-WOA effectively improves the stability of the optimal solution and helps the algorithm to approach the global optimal solution. The method proposed in this paper contributes to the field of optimization which solves problems more powerfully and efficiently.","PeriodicalId":55177,"journal":{"name":"Discrete Dynamics in Nature and Society","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CMAIS-WOA: An Improved WOA with Chaotic Mapping and Adaptive Iterative Strategy\",\"authors\":\"Chao-Hsien Hsieh, Qing Zhang, Ya Xu, Ziyi Wang\",\"doi\":\"10.1155/2023/8160121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an improved whale optimization algorithm with chaotic mapping and adaptive iteration strategy (CMAIS-WOA). This algorithm addresses the issues of the WOA algorithm that is prone to local optimal solutions with low stability. CMAIS-WOA utilizes chaotic mapping to enhance the diversity and coverage of the initial population. Also, it adaptively adjusts the weight values based on the current distribution of whale populations and the fitness of search agents. In addition, CMAIS-WOA uses an improved nonlinear convergence factor to adjust the breadth-first and depth-first search during the optimization process. The performance of the proposed CMAIS-WOA is evaluated by using 13 classical benchmark functions and IEEE CEC2014 test suite. The experimental results show that CMAIS-WOA effectively improves the stability of the optimal solution and helps the algorithm to approach the global optimal solution. The method proposed in this paper contributes to the field of optimization which solves problems more powerfully and efficiently.\",\"PeriodicalId\":55177,\"journal\":{\"name\":\"Discrete Dynamics in Nature and Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Dynamics in Nature and Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/8160121\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Dynamics in Nature and Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1155/2023/8160121","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
CMAIS-WOA: An Improved WOA with Chaotic Mapping and Adaptive Iterative Strategy
This paper proposes an improved whale optimization algorithm with chaotic mapping and adaptive iteration strategy (CMAIS-WOA). This algorithm addresses the issues of the WOA algorithm that is prone to local optimal solutions with low stability. CMAIS-WOA utilizes chaotic mapping to enhance the diversity and coverage of the initial population. Also, it adaptively adjusts the weight values based on the current distribution of whale populations and the fitness of search agents. In addition, CMAIS-WOA uses an improved nonlinear convergence factor to adjust the breadth-first and depth-first search during the optimization process. The performance of the proposed CMAIS-WOA is evaluated by using 13 classical benchmark functions and IEEE CEC2014 test suite. The experimental results show that CMAIS-WOA effectively improves the stability of the optimal solution and helps the algorithm to approach the global optimal solution. The method proposed in this paper contributes to the field of optimization which solves problems more powerfully and efficiently.
期刊介绍:
The main objective of Discrete Dynamics in Nature and Society is to foster links between basic and applied research relating to discrete dynamics of complex systems encountered in the natural and social sciences. The journal intends to stimulate publications directed to the analyses of computer generated solutions and chaotic in particular, correctness of numerical procedures, chaos synchronization and control, discrete optimization methods among other related topics. The journal provides a channel of communication between scientists and practitioners working in the field of complex systems analysis and will stimulate the development and use of discrete dynamical approach.