构建振荡系数类中微分 Sturm-Liouville 方程解的渐近线

IF 0.2 Q4 MATHEMATICS
N. F. Valeev, E. A. Nazirova, Ya. T. Sultanaev
{"title":"构建振荡系数类中微分 Sturm-Liouville 方程解的渐近线","authors":"N. F. Valeev, E. A. Nazirova, Ya. T. Sultanaev","doi":"10.3103/s0027132223050066","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The article is focused on the development of a method allowing one to construct asymptotics for solutions to ODEs of arbitrary order with oscillating coefficients on the semiaxis. The idea of the method is presented on the example of studying the asymptotics of the Sturm–Liouville equation.</p>","PeriodicalId":42963,"journal":{"name":"Moscow University Mathematics Bulletin","volume":"20 1","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constructing the Asymptotics of Solutions to Differential Sturm–Liouville Equations in Classes of Oscillating Coefficients\",\"authors\":\"N. F. Valeev, E. A. Nazirova, Ya. T. Sultanaev\",\"doi\":\"10.3103/s0027132223050066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>The article is focused on the development of a method allowing one to construct asymptotics for solutions to ODEs of arbitrary order with oscillating coefficients on the semiaxis. The idea of the method is presented on the example of studying the asymptotics of the Sturm–Liouville equation.</p>\",\"PeriodicalId\":42963,\"journal\":{\"name\":\"Moscow University Mathematics Bulletin\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2023-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moscow University Mathematics Bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3103/s0027132223050066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow University Mathematics Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s0027132223050066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 这篇文章的重点是开发一种方法,使人们能够构建在半轴上具有振荡系数的任意阶 ODE 解的渐近线。文章以研究 Sturm-Liouville 方程的渐近线为例,介绍了该方法的思想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Constructing the Asymptotics of Solutions to Differential Sturm–Liouville Equations in Classes of Oscillating Coefficients

Abstract

The article is focused on the development of a method allowing one to construct asymptotics for solutions to ODEs of arbitrary order with oscillating coefficients on the semiaxis. The idea of the method is presented on the example of studying the asymptotics of the Sturm–Liouville equation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
25.00%
发文量
13
期刊介绍: Moscow University Mathematics Bulletin  is the journal of scientific publications reflecting the most important areas of mathematical studies at Lomonosov Moscow State University. The journal covers research in theory of functions, functional analysis, algebra, geometry, topology, ordinary and partial differential equations, probability theory, stochastic processes, mathematical statistics, optimal control, number theory, mathematical logic, theory of algorithms, discrete mathematics and computational mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信