{"title":"压电双材料中竹篙形界面裂缝的动态行为建模与研究","authors":"Yani Zhang, Junlin Li, Di Liu, Xiufeng Xie","doi":"10.1155/2023/6660484","DOIUrl":null,"url":null,"abstract":"In this section, the dynamic propagation behavior of a penny-shaped interface crack in piezoelectric bimaterials is analyzed. The objective of this paper is to use the boundary conditions of the penny-shaped interface crack to study the dynamic propagation of the crack under the action of load, so as to provide some valuable implications for the fracture mechanics of the piezoelectric bimaterials and simulate the interface crack between piezoelectric bimaterials, it is necessary to establish a suitable model and give appropriate boundary conditions according to the actual situation. The elastic displacement and potential equations are constructed according to the structural characteristics of the circular crack. In the case of a given displacement or stress, the Laplace transform and Hankel transform are used to simplify the problem into an integral equation with unknown functions. According to the boundary conditions, the corresponding unknowns are obtained, and the closed solution is derived. The results show that the fracture toughness of a penny-shaped interface crack in piezoelectric bimaterials is related to the thickness of the material, the impact time, the material characteristics, and the electric field. At the same time, it can be found that different materials have different roles in the crack propagation, so it is very important to study the crack opening displacement (COD) intensity factor of the crack for safety design.","PeriodicalId":49111,"journal":{"name":"Advances in Mathematical Physics","volume":"34 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modelling and Investigation of the Dynamic Behavior of a Penny-Shaped Interface Crack in Piezoelectric Bimaterials\",\"authors\":\"Yani Zhang, Junlin Li, Di Liu, Xiufeng Xie\",\"doi\":\"10.1155/2023/6660484\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this section, the dynamic propagation behavior of a penny-shaped interface crack in piezoelectric bimaterials is analyzed. The objective of this paper is to use the boundary conditions of the penny-shaped interface crack to study the dynamic propagation of the crack under the action of load, so as to provide some valuable implications for the fracture mechanics of the piezoelectric bimaterials and simulate the interface crack between piezoelectric bimaterials, it is necessary to establish a suitable model and give appropriate boundary conditions according to the actual situation. The elastic displacement and potential equations are constructed according to the structural characteristics of the circular crack. In the case of a given displacement or stress, the Laplace transform and Hankel transform are used to simplify the problem into an integral equation with unknown functions. According to the boundary conditions, the corresponding unknowns are obtained, and the closed solution is derived. The results show that the fracture toughness of a penny-shaped interface crack in piezoelectric bimaterials is related to the thickness of the material, the impact time, the material characteristics, and the electric field. At the same time, it can be found that different materials have different roles in the crack propagation, so it is very important to study the crack opening displacement (COD) intensity factor of the crack for safety design.\",\"PeriodicalId\":49111,\"journal\":{\"name\":\"Advances in Mathematical Physics\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/6660484\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2023/6660484","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
Modelling and Investigation of the Dynamic Behavior of a Penny-Shaped Interface Crack in Piezoelectric Bimaterials
In this section, the dynamic propagation behavior of a penny-shaped interface crack in piezoelectric bimaterials is analyzed. The objective of this paper is to use the boundary conditions of the penny-shaped interface crack to study the dynamic propagation of the crack under the action of load, so as to provide some valuable implications for the fracture mechanics of the piezoelectric bimaterials and simulate the interface crack between piezoelectric bimaterials, it is necessary to establish a suitable model and give appropriate boundary conditions according to the actual situation. The elastic displacement and potential equations are constructed according to the structural characteristics of the circular crack. In the case of a given displacement or stress, the Laplace transform and Hankel transform are used to simplify the problem into an integral equation with unknown functions. According to the boundary conditions, the corresponding unknowns are obtained, and the closed solution is derived. The results show that the fracture toughness of a penny-shaped interface crack in piezoelectric bimaterials is related to the thickness of the material, the impact time, the material characteristics, and the electric field. At the same time, it can be found that different materials have different roles in the crack propagation, so it is very important to study the crack opening displacement (COD) intensity factor of the crack for safety design.
期刊介绍:
Advances in Mathematical Physics publishes papers that seek to understand mathematical basis of physical phenomena, and solve problems in physics via mathematical approaches. The journal welcomes submissions from mathematical physicists, theoretical physicists, and mathematicians alike.
As well as original research, Advances in Mathematical Physics also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.