正则图中的边连接性和成对不相交完全匹配

IF 1 2区 数学 Q1 MATHEMATICS
Yulai Ma, Davide Mattiolo, Eckhard Steffen, Isaak H. Wolf
{"title":"正则图中的边连接性和成对不相交完全匹配","authors":"Yulai Ma, Davide Mattiolo, Eckhard Steffen, Isaak H. Wolf","doi":"10.1007/s00493-023-00078-9","DOIUrl":null,"url":null,"abstract":"<p>For <span>\\(0 \\le t \\le r\\)</span> let <i>m</i>(<i>t</i>, <i>r</i>) be the maximum number <i>s</i> such that every <i>t</i>-edge-connected <i>r</i>-graph has <i>s</i> pairwise disjoint perfect matchings. There are only a few values of <i>m</i>(<i>t</i>, <i>r</i>) known, for instance <span>\\(m(3,3)=m(4,r)=1\\)</span>, and <span>\\(m(t,r) \\le r-2\\)</span> for all <span>\\(t \\not = 5\\)</span>, and <span>\\(m(t,r) \\le r-3\\)</span> if <i>r</i> is even. We prove that <span>\\(m(2l,r) \\le 3l - 6\\)</span> for every <span>\\(l \\ge 3\\)</span> and <span>\\(r \\ge 2 l\\)</span>.</p>","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":"38 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Edge-Connectivity and Pairwise Disjoint Perfect Matchings in Regular Graphs\",\"authors\":\"Yulai Ma, Davide Mattiolo, Eckhard Steffen, Isaak H. Wolf\",\"doi\":\"10.1007/s00493-023-00078-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For <span>\\\\(0 \\\\le t \\\\le r\\\\)</span> let <i>m</i>(<i>t</i>, <i>r</i>) be the maximum number <i>s</i> such that every <i>t</i>-edge-connected <i>r</i>-graph has <i>s</i> pairwise disjoint perfect matchings. There are only a few values of <i>m</i>(<i>t</i>, <i>r</i>) known, for instance <span>\\\\(m(3,3)=m(4,r)=1\\\\)</span>, and <span>\\\\(m(t,r) \\\\le r-2\\\\)</span> for all <span>\\\\(t \\\\not = 5\\\\)</span>, and <span>\\\\(m(t,r) \\\\le r-3\\\\)</span> if <i>r</i> is even. We prove that <span>\\\\(m(2l,r) \\\\le 3l - 6\\\\)</span> for every <span>\\\\(l \\\\ge 3\\\\)</span> and <span>\\\\(r \\\\ge 2 l\\\\)</span>.</p>\",\"PeriodicalId\":50666,\"journal\":{\"name\":\"Combinatorica\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00493-023-00078-9\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00493-023-00078-9","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于(0 \le t \le r\),让 m(t, r) 是最大的数 s,使得每个 t 边连接的 r 图都有 s 个成双成对的完美匹配。m(t,r)只有少数几个已知值,例如:(m(3,3)=m(4,r)=1),在所有(t不=5)的情况下(m(t,r) (le r-2),如果r是偶数,则(m(t,r) (le r-3)。我们证明,对于每一个l和r来说,m(2l,r)都是3l-6。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Edge-Connectivity and Pairwise Disjoint Perfect Matchings in Regular Graphs

Edge-Connectivity and Pairwise Disjoint Perfect Matchings in Regular Graphs

For \(0 \le t \le r\) let m(tr) be the maximum number s such that every t-edge-connected r-graph has s pairwise disjoint perfect matchings. There are only a few values of m(tr) known, for instance \(m(3,3)=m(4,r)=1\), and \(m(t,r) \le r-2\) for all \(t \not = 5\), and \(m(t,r) \le r-3\) if r is even. We prove that \(m(2l,r) \le 3l - 6\) for every \(l \ge 3\) and \(r \ge 2 l\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Combinatorica
Combinatorica 数学-数学
CiteScore
1.90
自引率
0.00%
发文量
45
审稿时长
>12 weeks
期刊介绍: COMBINATORICA publishes research papers in English in a variety of areas of combinatorics and the theory of computing, with particular emphasis on general techniques and unifying principles. Typical but not exclusive topics covered by COMBINATORICA are - Combinatorial structures (graphs, hypergraphs, matroids, designs, permutation groups). - Combinatorial optimization. - Combinatorial aspects of geometry and number theory. - Algorithms in combinatorics and related fields. - Computational complexity theory. - Randomization and explicit construction in combinatorics and algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信