{"title":"赫德涅米等价空间猜想的拓扑版本","authors":"Vuong Bui, Hamid Reza Daneshpajouh","doi":"10.1007/s00493-023-00079-8","DOIUrl":null,"url":null,"abstract":"<p>A topological version of the famous Hedetniemi conjecture says: The mapping index of the Cartesian product of two <span>\\({\\mathbb {Z}}/2\\)</span>- spaces is equal to the minimum of their <span>\\({\\mathbb {Z}}/2\\)</span>-indexes. The main purpose of this article is to study the topological version of the Hedetniemi conjecture for <i>G</i>-spaces. Indeed, we show that the topological Hedetniemi conjecture cannot be valid for general pairs of <i>G</i>-spaces. More precisely, we show that this conjecture can possibly survive if the group <i>G</i> is either a cyclic <i>p</i>-group or a generalized quaternion group whose size is a power of 2.</p>","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":"16 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Topological Version of Hedetniemi’s Conjecture for Equivariant Spaces\",\"authors\":\"Vuong Bui, Hamid Reza Daneshpajouh\",\"doi\":\"10.1007/s00493-023-00079-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A topological version of the famous Hedetniemi conjecture says: The mapping index of the Cartesian product of two <span>\\\\({\\\\mathbb {Z}}/2\\\\)</span>- spaces is equal to the minimum of their <span>\\\\({\\\\mathbb {Z}}/2\\\\)</span>-indexes. The main purpose of this article is to study the topological version of the Hedetniemi conjecture for <i>G</i>-spaces. Indeed, we show that the topological Hedetniemi conjecture cannot be valid for general pairs of <i>G</i>-spaces. More precisely, we show that this conjecture can possibly survive if the group <i>G</i> is either a cyclic <i>p</i>-group or a generalized quaternion group whose size is a power of 2.</p>\",\"PeriodicalId\":50666,\"journal\":{\"name\":\"Combinatorica\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00493-023-00079-8\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00493-023-00079-8","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
著名的赫德涅米猜想的拓扑版本是这样说的两个 \({\mathbb {Z}}/2\)- 空间的笛卡尔积的映射指数等于它们的 \({\mathbb {Z}}/2\)- 指数的最小值。本文的主要目的是研究 G 空间的赫德涅米猜想的拓扑版本。事实上,我们证明了拓扑的赫德涅米猜想对于一般的 G 空间对是不成立的。更准确地说,我们证明了如果 G 群是循环 p 群或大小为 2 的幂的广义四元数群,这个猜想就有可能成立。
A Topological Version of Hedetniemi’s Conjecture for Equivariant Spaces
A topological version of the famous Hedetniemi conjecture says: The mapping index of the Cartesian product of two \({\mathbb {Z}}/2\)- spaces is equal to the minimum of their \({\mathbb {Z}}/2\)-indexes. The main purpose of this article is to study the topological version of the Hedetniemi conjecture for G-spaces. Indeed, we show that the topological Hedetniemi conjecture cannot be valid for general pairs of G-spaces. More precisely, we show that this conjecture can possibly survive if the group G is either a cyclic p-group or a generalized quaternion group whose size is a power of 2.
期刊介绍:
COMBINATORICA publishes research papers in English in a variety of areas of combinatorics and the theory of computing, with particular emphasis on general techniques and unifying principles. Typical but not exclusive topics covered by COMBINATORICA are
- Combinatorial structures (graphs, hypergraphs, matroids, designs, permutation groups).
- Combinatorial optimization.
- Combinatorial aspects of geometry and number theory.
- Algorithms in combinatorics and related fields.
- Computational complexity theory.
- Randomization and explicit construction in combinatorics and algorithms.