推进病媒蚊虫宿主叮咬地点选择调查的分析工具包

IF 1.9 3区 化学 Q3 BIOCHEMICAL RESEARCH METHODS
Madelien Wooding, Tyren Dodgen, Egmont R. Rohwer, Yvette Naudé
{"title":"推进病媒蚊虫宿主叮咬地点选择调查的分析工具包","authors":"Madelien Wooding,&nbsp;Tyren Dodgen,&nbsp;Egmont R. Rohwer,&nbsp;Yvette Naudé","doi":"10.1002/jms.4992","DOIUrl":null,"url":null,"abstract":"<p>High-resolution mass spectrometry and ion mobility spectrometry provide additional confidence in biological marker discovery and elucidation by adding additional peak capacity through physiochemical separation orthogonal to chromatography. Sophisticated analytical techniques have proved valuable in the identification of human skin surface chemicals used by vector mosquitoes to find their human host. Polydimethylsiloxane (PDMS) was used as a non-invasive passive wearable sampler to concentrate skin surface non-volatile and semi-volatile compounds prior to solvent desorption directly in an LC vial, thereby simplifying the link between extraction and analysis. Ultra-performance liquid chromatography with ion mobility spectrometry coupled with high-resolution mass spectrometry (UPLC-IMS-HRMS) was used for compound separation and detection. A comparison of the skin chemical profiles between the ankle and wrist skin surface region sampled over a 5-day period for a human volunteer was done. Twenty-three biomarkers were tentatively identified with the aid of a collision cross-section (CCS) prediction tool, seven associated with the ankle skin surface region and 16 closely associated with the wrist skin surface. Ten amino acids were detected and unequivocally identified on the human skin surface for the first time. Furthermore, 22 previously unreported skin surface compounds were tentatively identified on the human skin surface using accurate mass, CCS values and fragmentation patterns. Method limits of detection for the passive skin sampling method ranged from 8.7 (sulfadimethoxine) to 95 ng (taurine). This approach enabled the detection and identification of as-yet unknown human skin surface compounds and provided corresponding CCS values.</p>","PeriodicalId":16178,"journal":{"name":"Journal of Mass Spectrometry","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/epdf/10.1002/jms.4992","citationCount":"0","resultStr":"{\"title\":\"Advancing the analytical toolkit in the investigation of vector mosquito host biting site selection\",\"authors\":\"Madelien Wooding,&nbsp;Tyren Dodgen,&nbsp;Egmont R. Rohwer,&nbsp;Yvette Naudé\",\"doi\":\"10.1002/jms.4992\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>High-resolution mass spectrometry and ion mobility spectrometry provide additional confidence in biological marker discovery and elucidation by adding additional peak capacity through physiochemical separation orthogonal to chromatography. Sophisticated analytical techniques have proved valuable in the identification of human skin surface chemicals used by vector mosquitoes to find their human host. Polydimethylsiloxane (PDMS) was used as a non-invasive passive wearable sampler to concentrate skin surface non-volatile and semi-volatile compounds prior to solvent desorption directly in an LC vial, thereby simplifying the link between extraction and analysis. Ultra-performance liquid chromatography with ion mobility spectrometry coupled with high-resolution mass spectrometry (UPLC-IMS-HRMS) was used for compound separation and detection. A comparison of the skin chemical profiles between the ankle and wrist skin surface region sampled over a 5-day period for a human volunteer was done. Twenty-three biomarkers were tentatively identified with the aid of a collision cross-section (CCS) prediction tool, seven associated with the ankle skin surface region and 16 closely associated with the wrist skin surface. Ten amino acids were detected and unequivocally identified on the human skin surface for the first time. Furthermore, 22 previously unreported skin surface compounds were tentatively identified on the human skin surface using accurate mass, CCS values and fragmentation patterns. Method limits of detection for the passive skin sampling method ranged from 8.7 (sulfadimethoxine) to 95 ng (taurine). This approach enabled the detection and identification of as-yet unknown human skin surface compounds and provided corresponding CCS values.</p>\",\"PeriodicalId\":16178,\"journal\":{\"name\":\"Journal of Mass Spectrometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/epdf/10.1002/jms.4992\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mass Spectrometry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jms.4992\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jms.4992","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

高分辨率质谱法和离子迁移谱法通过与色谱法正交的生化分离增加了额外的峰容量,为生物标记的发现和阐明提供了更多的信心。事实证明,先进的分析技术在鉴定病媒蚊子用来寻找人类宿主的人体皮肤表面化学物质方面非常有价值。聚二甲基硅氧烷(PDMS)被用作一种非侵入式被动可穿戴采样器,可在溶剂解吸之前将皮肤表面的非挥发性和半挥发性化合物浓缩到液相色谱瓶中,从而简化了提取和分析之间的环节。化合物的分离和检测采用了超高效液相色谱-离子迁移谱-高分辨质谱(UPLC-IMS-HRMS)联用技术。比较了一名人类志愿者脚踝和手腕皮肤表面区域在 5 天采样期间的皮肤化学特征。借助碰撞截面(CCS)预测工具,初步确定了 23 种生物标记物,其中 7 种与脚踝皮肤表面区域相关,16 种与手腕皮肤表面密切相关。首次在人体皮肤表面检测到并明确确定了 10 种氨基酸。此外,利用精确的质量、CCS 值和碎片模式,在人体皮肤表面初步鉴定出 22 种以前未报道过的皮肤表面化合物。被动皮肤取样法的方法检测限从 8.7(磺胺二甲氧嗪)到 95 纳克(牛磺酸)不等。这种方法能够检测和鉴定尚未知晓的人体皮肤表面化合物,并提供相应的 CCS 值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Advancing the analytical toolkit in the investigation of vector mosquito host biting site selection

Advancing the analytical toolkit in the investigation of vector mosquito host biting site selection

High-resolution mass spectrometry and ion mobility spectrometry provide additional confidence in biological marker discovery and elucidation by adding additional peak capacity through physiochemical separation orthogonal to chromatography. Sophisticated analytical techniques have proved valuable in the identification of human skin surface chemicals used by vector mosquitoes to find their human host. Polydimethylsiloxane (PDMS) was used as a non-invasive passive wearable sampler to concentrate skin surface non-volatile and semi-volatile compounds prior to solvent desorption directly in an LC vial, thereby simplifying the link between extraction and analysis. Ultra-performance liquid chromatography with ion mobility spectrometry coupled with high-resolution mass spectrometry (UPLC-IMS-HRMS) was used for compound separation and detection. A comparison of the skin chemical profiles between the ankle and wrist skin surface region sampled over a 5-day period for a human volunteer was done. Twenty-three biomarkers were tentatively identified with the aid of a collision cross-section (CCS) prediction tool, seven associated with the ankle skin surface region and 16 closely associated with the wrist skin surface. Ten amino acids were detected and unequivocally identified on the human skin surface for the first time. Furthermore, 22 previously unreported skin surface compounds were tentatively identified on the human skin surface using accurate mass, CCS values and fragmentation patterns. Method limits of detection for the passive skin sampling method ranged from 8.7 (sulfadimethoxine) to 95 ng (taurine). This approach enabled the detection and identification of as-yet unknown human skin surface compounds and provided corresponding CCS values.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mass Spectrometry
Journal of Mass Spectrometry 化学-光谱学
CiteScore
5.10
自引率
0.00%
发文量
84
审稿时长
1.5 months
期刊介绍: The Journal of Mass Spectrometry publishes papers on a broad range of topics of interest to scientists working in both fundamental and applied areas involving the study of gaseous ions. The aim of JMS is to serve the scientific community with information provided and arranged to help senior investigators to better stay abreast of new discoveries and studies in their own field, to make them aware of events and developments in associated fields, and to provide students and newcomers the basic tools with which to learn fundamental and applied aspects of mass spectrometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信