全态交映变体上的有理曲线族及其在 0 循环中的应用

IF 1.3 1区 数学 Q1 MATHEMATICS
François Charles, Giovanni Mongardi, Gianluca Pacienza
{"title":"全态交映变体上的有理曲线族及其在 0 循环中的应用","authors":"François Charles, Giovanni Mongardi, Gianluca Pacienza","doi":"10.1112/s0010437x20007526","DOIUrl":null,"url":null,"abstract":"<p>We study families of rational curves on irreducible holomorphic symplectic varieties. We give a necessary and sufficient condition for a sufficiently ample linear system on a holomorphic symplectic variety of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231215111814759-0477:S0010437X20007526:S0010437X20007526_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$K3^{[n]}$</span></span></img></span></span>-type to contain a uniruled divisor covered by rational curves of primitive class. In particular, for any fixed <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231215111814759-0477:S0010437X20007526:S0010437X20007526_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$n$</span></span></img></span></span>, we show that there are only finitely many polarization types of holomorphic symplectic variety of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231215111814759-0477:S0010437X20007526:S0010437X20007526_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$K3^{[n]}$</span></span></img></span></span>-type that do not contain such a uniruled divisor. As an application, we provide a generalization of a result due to Beauville–Voisin on the Chow group of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231215111814759-0477:S0010437X20007526:S0010437X20007526_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$0$</span></span></img></span></span>-cycles on such varieties.</p>","PeriodicalId":55232,"journal":{"name":"Compositio Mathematica","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Families of rational curves on holomorphic symplectic varieties and applications to 0-cycles\",\"authors\":\"François Charles, Giovanni Mongardi, Gianluca Pacienza\",\"doi\":\"10.1112/s0010437x20007526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study families of rational curves on irreducible holomorphic symplectic varieties. We give a necessary and sufficient condition for a sufficiently ample linear system on a holomorphic symplectic variety of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231215111814759-0477:S0010437X20007526:S0010437X20007526_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$K3^{[n]}$</span></span></img></span></span>-type to contain a uniruled divisor covered by rational curves of primitive class. In particular, for any fixed <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231215111814759-0477:S0010437X20007526:S0010437X20007526_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$n$</span></span></img></span></span>, we show that there are only finitely many polarization types of holomorphic symplectic variety of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231215111814759-0477:S0010437X20007526:S0010437X20007526_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$K3^{[n]}$</span></span></img></span></span>-type that do not contain such a uniruled divisor. As an application, we provide a generalization of a result due to Beauville–Voisin on the Chow group of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231215111814759-0477:S0010437X20007526:S0010437X20007526_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$0$</span></span></img></span></span>-cycles on such varieties.</p>\",\"PeriodicalId\":55232,\"journal\":{\"name\":\"Compositio Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Compositio Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1112/s0010437x20007526\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Compositio Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1112/s0010437x20007526","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究不可还原全纯交映变上的有理曲线族。我们给出了一个必要且充分的条件,即在 $K3^{[n]}$ 型全形交映变上的充分充分的线性系统包含一个由原始类有理曲线覆盖的无iruled分部。特别是,对于任何固定的 $n$,我们证明了只有有限多的 $K3^{[n]}$ 型全纯交映综的极化类型不包含这样的未iruled divisor。作为一个应用,我们提供了博维尔-沃桑(Beauville-Voisin)关于此类变上 $0$- 循环的周群的一个结果的推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Families of rational curves on holomorphic symplectic varieties and applications to 0-cycles

We study families of rational curves on irreducible holomorphic symplectic varieties. We give a necessary and sufficient condition for a sufficiently ample linear system on a holomorphic symplectic variety of $K3^{[n]}$-type to contain a uniruled divisor covered by rational curves of primitive class. In particular, for any fixed $n$, we show that there are only finitely many polarization types of holomorphic symplectic variety of $K3^{[n]}$-type that do not contain such a uniruled divisor. As an application, we provide a generalization of a result due to Beauville–Voisin on the Chow group of $0$-cycles on such varieties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Compositio Mathematica
Compositio Mathematica 数学-数学
CiteScore
2.10
自引率
0.00%
发文量
62
审稿时长
6-12 weeks
期刊介绍: Compositio Mathematica is a prestigious, well-established journal publishing first-class research papers that traditionally focus on the mainstream of pure mathematics. Compositio Mathematica has a broad scope which includes the fields of algebra, number theory, topology, algebraic and differential geometry and global analysis. Papers on other topics are welcome if they are of broad interest. All contributions are required to meet high standards of quality and originality. The Journal has an international editorial board reflected in the journal content.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信