逆问题的学习正则化:光谱模型的启示

Martin Burger, Samira Kabri
{"title":"逆问题的学习正则化:光谱模型的启示","authors":"Martin Burger, Samira Kabri","doi":"arxiv-2312.09845","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to provide a theoretically founded investigation of\nstate-of-the-art learning approaches for inverse problems. We give an extended\ndefinition of regularization methods and their convergence in terms of the\nunderlying data distributions, which paves the way for future theoretical\nstudies. Based on a simple spectral learning model previously introduced for\nsupervised learning, we investigate some key properties of different learning\nparadigms for inverse problems, which can be formulated independently of\nspecific architectures. In particular we investigate the regularization\nproperties, bias, and critical dependence on training data distributions.\nMoreover, our framework allows to highlight and compare the specific behavior\nof the different paradigms in the infinite-dimensional limit.","PeriodicalId":501061,"journal":{"name":"arXiv - CS - Numerical Analysis","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learned Regularization for Inverse Problems: Insights from a Spectral Model\",\"authors\":\"Martin Burger, Samira Kabri\",\"doi\":\"arxiv-2312.09845\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this paper is to provide a theoretically founded investigation of\\nstate-of-the-art learning approaches for inverse problems. We give an extended\\ndefinition of regularization methods and their convergence in terms of the\\nunderlying data distributions, which paves the way for future theoretical\\nstudies. Based on a simple spectral learning model previously introduced for\\nsupervised learning, we investigate some key properties of different learning\\nparadigms for inverse problems, which can be formulated independently of\\nspecific architectures. In particular we investigate the regularization\\nproperties, bias, and critical dependence on training data distributions.\\nMoreover, our framework allows to highlight and compare the specific behavior\\nof the different paradigms in the infinite-dimensional limit.\",\"PeriodicalId\":501061,\"journal\":{\"name\":\"arXiv - CS - Numerical Analysis\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2312.09845\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.09845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在从理论上探讨逆问题的最新学习方法。我们从基础数据分布的角度,对正则化方法及其收敛性给出了扩展定义,为未来的理论研究铺平了道路。基于之前介绍的用于监督学习的简单光谱学习模型,我们研究了逆问题不同学习范式的一些关键属性,这些范式可以独立于特定的体系结构来制定。此外,我们的框架还可以突出和比较不同范式在无限维极限下的特定行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learned Regularization for Inverse Problems: Insights from a Spectral Model
The aim of this paper is to provide a theoretically founded investigation of state-of-the-art learning approaches for inverse problems. We give an extended definition of regularization methods and their convergence in terms of the underlying data distributions, which paves the way for future theoretical studies. Based on a simple spectral learning model previously introduced for supervised learning, we investigate some key properties of different learning paradigms for inverse problems, which can be formulated independently of specific architectures. In particular we investigate the regularization properties, bias, and critical dependence on training data distributions. Moreover, our framework allows to highlight and compare the specific behavior of the different paradigms in the infinite-dimensional limit.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信