多元背景下的斯坦因估算

Adrian Fischer, Robert E. Gaunt, Yvik Swan
{"title":"多元背景下的斯坦因估算","authors":"Adrian Fischer, Robert E. Gaunt, Yvik Swan","doi":"arxiv-2312.09344","DOIUrl":null,"url":null,"abstract":"We use Stein characterisations to derive new moment-type estimators for the\nparameters of several multivariate distributions in the i.i.d. case; we also\nderive the asymptotic properties of these estimators. Our examples include the\nmultivariate truncated normal distribution and several spherical distributions.\nThe estimators are explicit and therefore provide an interesting alternative to\nthe maximum-likelihood estimator. The quality of these estimators is assessed\nthrough competitive simulation studies in which we compare their behaviour to\nthe performance of other estimators available in the literature.","PeriodicalId":501330,"journal":{"name":"arXiv - MATH - Statistics Theory","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stein estimation in a multivariate setting\",\"authors\":\"Adrian Fischer, Robert E. Gaunt, Yvik Swan\",\"doi\":\"arxiv-2312.09344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We use Stein characterisations to derive new moment-type estimators for the\\nparameters of several multivariate distributions in the i.i.d. case; we also\\nderive the asymptotic properties of these estimators. Our examples include the\\nmultivariate truncated normal distribution and several spherical distributions.\\nThe estimators are explicit and therefore provide an interesting alternative to\\nthe maximum-likelihood estimator. The quality of these estimators is assessed\\nthrough competitive simulation studies in which we compare their behaviour to\\nthe performance of other estimators available in the literature.\",\"PeriodicalId\":501330,\"journal\":{\"name\":\"arXiv - MATH - Statistics Theory\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Statistics Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2312.09344\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.09344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们利用斯坦因特征推导出 i.i.d. 情况下几种多元分布参数的新时刻型估计器;我们还揭示了这些估计器的渐近特性。我们的例子包括多元截断正态分布和几种球形分布。这些估计值是显式的,因此为最大似然估计值提供了一种有趣的替代方法。我们通过竞争性模拟研究评估了这些估计器的质量,并将它们的行为与文献中其他估计器的性能进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stein estimation in a multivariate setting
We use Stein characterisations to derive new moment-type estimators for the parameters of several multivariate distributions in the i.i.d. case; we also derive the asymptotic properties of these estimators. Our examples include the multivariate truncated normal distribution and several spherical distributions. The estimators are explicit and therefore provide an interesting alternative to the maximum-likelihood estimator. The quality of these estimators is assessed through competitive simulation studies in which we compare their behaviour to the performance of other estimators available in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信