Jungwook Lee, Daeseung Kim, Xuanang Xu, Tianshu Kuang, Jaime Gateno, Pingkun Yan
{"title":"预测颅颌面畸形患者术后的最佳面部特异性地标","authors":"Jungwook Lee, Daeseung Kim, Xuanang Xu, Tianshu Kuang, Jaime Gateno, Pingkun Yan","doi":"10.1101/2023.12.13.23299919","DOIUrl":null,"url":null,"abstract":"Orthognathic surgery traditionally focuses on correcting skeletal abnormalities and malocclusion, with the expectation that an optimal facial appearance will naturally follow. However, this skeletal-driven approach can lead to undesirable facial aesthetics and residual asymmetry. To address these issues, a soft-tissue-driven planning method has been proposed. This innovative method bases bone movement estimates on the targeted ideal facial appearance, thus increasing the surgical plan’s accuracy and effectiveness. This study explores the initial phase of implementing a soft-tissue-driven approach, simulating the patient’s optimal facial look by repositioning deformed facial landmarks to an ideal state. The algorithm incorporates symmetrization and weighted optimization strategies, aligning projected optimal landmarks with standard cephalometric values for both facial symmetry and form, which are integral to facial aesthetics in orthognathic surgery. It also includes regularization to preserve the patient’s original facial characteristics. Validated using retrospective analysis of data from both preoperative patients and normal subjects, this approach effectively achieves not only facial symmetry, particularly in the lower face, but also a more natural and normalized facial form. This novel approach, aligning with soft-tissue-driven planning principles, shows promise in surpassing traditional methods, potentially leading to enhanced facial outcomes and patient satisfaction in orthognathic surgery.","PeriodicalId":501363,"journal":{"name":"medRxiv - Dentistry and Oral Medicine","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting Optimal Patient-Specific Postoperative Facial Landmarks for Patients with Craniomaxillofacial Deformities\",\"authors\":\"Jungwook Lee, Daeseung Kim, Xuanang Xu, Tianshu Kuang, Jaime Gateno, Pingkun Yan\",\"doi\":\"10.1101/2023.12.13.23299919\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Orthognathic surgery traditionally focuses on correcting skeletal abnormalities and malocclusion, with the expectation that an optimal facial appearance will naturally follow. However, this skeletal-driven approach can lead to undesirable facial aesthetics and residual asymmetry. To address these issues, a soft-tissue-driven planning method has been proposed. This innovative method bases bone movement estimates on the targeted ideal facial appearance, thus increasing the surgical plan’s accuracy and effectiveness. This study explores the initial phase of implementing a soft-tissue-driven approach, simulating the patient’s optimal facial look by repositioning deformed facial landmarks to an ideal state. The algorithm incorporates symmetrization and weighted optimization strategies, aligning projected optimal landmarks with standard cephalometric values for both facial symmetry and form, which are integral to facial aesthetics in orthognathic surgery. It also includes regularization to preserve the patient’s original facial characteristics. Validated using retrospective analysis of data from both preoperative patients and normal subjects, this approach effectively achieves not only facial symmetry, particularly in the lower face, but also a more natural and normalized facial form. This novel approach, aligning with soft-tissue-driven planning principles, shows promise in surpassing traditional methods, potentially leading to enhanced facial outcomes and patient satisfaction in orthognathic surgery.\",\"PeriodicalId\":501363,\"journal\":{\"name\":\"medRxiv - Dentistry and Oral Medicine\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv - Dentistry and Oral Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2023.12.13.23299919\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Dentistry and Oral Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.12.13.23299919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Predicting Optimal Patient-Specific Postoperative Facial Landmarks for Patients with Craniomaxillofacial Deformities
Orthognathic surgery traditionally focuses on correcting skeletal abnormalities and malocclusion, with the expectation that an optimal facial appearance will naturally follow. However, this skeletal-driven approach can lead to undesirable facial aesthetics and residual asymmetry. To address these issues, a soft-tissue-driven planning method has been proposed. This innovative method bases bone movement estimates on the targeted ideal facial appearance, thus increasing the surgical plan’s accuracy and effectiveness. This study explores the initial phase of implementing a soft-tissue-driven approach, simulating the patient’s optimal facial look by repositioning deformed facial landmarks to an ideal state. The algorithm incorporates symmetrization and weighted optimization strategies, aligning projected optimal landmarks with standard cephalometric values for both facial symmetry and form, which are integral to facial aesthetics in orthognathic surgery. It also includes regularization to preserve the patient’s original facial characteristics. Validated using retrospective analysis of data from both preoperative patients and normal subjects, this approach effectively achieves not only facial symmetry, particularly in the lower face, but also a more natural and normalized facial form. This novel approach, aligning with soft-tissue-driven planning principles, shows promise in surpassing traditional methods, potentially leading to enhanced facial outcomes and patient satisfaction in orthognathic surgery.