John Leventides, Costas Poulios, Maria Livada, Ioannis Giannikos
{"title":"重新设计银行间网络","authors":"John Leventides, Costas Poulios, Maria Livada, Ioannis Giannikos","doi":"10.1017/nws.2023.21","DOIUrl":null,"url":null,"abstract":"<p>We investigate the reengineeering of interbank networks with a specific focus on capital increase. We consider a scenario where all other components of the network’s infrastructure remain stable (a practical assumption for short-term situations). Our objective is to assess the impact of raising capital on the network’s robustness and to address the following key aspects. First, given a predefined target for network robustness, our aim is to achieve this goal optimally, minimizing the required capital increase. Second, in cases where a total capital increase has been determined, the central challenge lies in distributing this increase among the banks in a manner that maximizes the stability of the network. To tackle these challenges, we begin by developing a comprehensive theoretical framework. Subsequently, we formulate an optimization model for the network’s redesign. Finally, we apply this framework to practical examples, highlighting its applicability in real-world scenarios.</p>","PeriodicalId":51827,"journal":{"name":"Network Science","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reengineering of interbank networks\",\"authors\":\"John Leventides, Costas Poulios, Maria Livada, Ioannis Giannikos\",\"doi\":\"10.1017/nws.2023.21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We investigate the reengineeering of interbank networks with a specific focus on capital increase. We consider a scenario where all other components of the network’s infrastructure remain stable (a practical assumption for short-term situations). Our objective is to assess the impact of raising capital on the network’s robustness and to address the following key aspects. First, given a predefined target for network robustness, our aim is to achieve this goal optimally, minimizing the required capital increase. Second, in cases where a total capital increase has been determined, the central challenge lies in distributing this increase among the banks in a manner that maximizes the stability of the network. To tackle these challenges, we begin by developing a comprehensive theoretical framework. Subsequently, we formulate an optimization model for the network’s redesign. Finally, we apply this framework to practical examples, highlighting its applicability in real-world scenarios.</p>\",\"PeriodicalId\":51827,\"journal\":{\"name\":\"Network Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Network Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/nws.2023.21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"SOCIAL SCIENCES, INTERDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/nws.2023.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOCIAL SCIENCES, INTERDISCIPLINARY","Score":null,"Total":0}
We investigate the reengineeering of interbank networks with a specific focus on capital increase. We consider a scenario where all other components of the network’s infrastructure remain stable (a practical assumption for short-term situations). Our objective is to assess the impact of raising capital on the network’s robustness and to address the following key aspects. First, given a predefined target for network robustness, our aim is to achieve this goal optimally, minimizing the required capital increase. Second, in cases where a total capital increase has been determined, the central challenge lies in distributing this increase among the banks in a manner that maximizes the stability of the network. To tackle these challenges, we begin by developing a comprehensive theoretical framework. Subsequently, we formulate an optimization model for the network’s redesign. Finally, we apply this framework to practical examples, highlighting its applicability in real-world scenarios.
期刊介绍:
Network Science is an important journal for an important discipline - one using the network paradigm, focusing on actors and relational linkages, to inform research, methodology, and applications from many fields across the natural, social, engineering and informational sciences. Given growing understanding of the interconnectedness and globalization of the world, network methods are an increasingly recognized way to research aspects of modern society along with the individuals, organizations, and other actors within it. The discipline is ready for a comprehensive journal, open to papers from all relevant areas. Network Science is a defining work, shaping this discipline. The journal welcomes contributions from researchers in all areas working on network theory, methods, and data.