Lauren M. Lopez, Quan Zhang, Orion Dollar, Jim Pfaendtner, Brent H. Shanks and Linda J. Broadbelt
{"title":"应用自动网络生成技术对潜在缓蚀剂进行逆合成规划","authors":"Lauren M. Lopez, Quan Zhang, Orion Dollar, Jim Pfaendtner, Brent H. Shanks and Linda J. Broadbelt","doi":"10.1039/D3ME00162H","DOIUrl":null,"url":null,"abstract":"<p >Retrosynthesis is the process of designing chemical pathways from a set of reactants to a set of desired products. However, when both the pools of potential reactants and products grow to a substantial size, this becomes infeasible without the aid of computational tools. This work uses Pickaxe, an automated network generation tool, to perform computational retrosynthesis on a pool of 297 bioprivileged candidate molecules as reactants and 44 003 potential corrosion inhibitors that were generated by a variational autoencoder. Unlike typical approaches in computational synthesis planning, the use of automated network generation allows flexibility in pathways and starting material beyond those that are documented. This work starts by replicating known pathways to corrosion inhibitors from a single bioprivileged candidate molecule and applying the constituent reaction families to the entirety of the reactant pool and concludes by generating networks with a more extensive reaction family list and two sets of co-reactants, or “helper molecules”. Network size, both from the perspective of total reactions enacted and total products formed, was analyzed.</p>","PeriodicalId":91,"journal":{"name":"Molecular Systems Design & Engineering","volume":" 4","pages":" 352-371"},"PeriodicalIF":3.2000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of automated network generation for retrosynthetic planning of potential corrosion inhibitors†\",\"authors\":\"Lauren M. Lopez, Quan Zhang, Orion Dollar, Jim Pfaendtner, Brent H. Shanks and Linda J. Broadbelt\",\"doi\":\"10.1039/D3ME00162H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Retrosynthesis is the process of designing chemical pathways from a set of reactants to a set of desired products. However, when both the pools of potential reactants and products grow to a substantial size, this becomes infeasible without the aid of computational tools. This work uses Pickaxe, an automated network generation tool, to perform computational retrosynthesis on a pool of 297 bioprivileged candidate molecules as reactants and 44 003 potential corrosion inhibitors that were generated by a variational autoencoder. Unlike typical approaches in computational synthesis planning, the use of automated network generation allows flexibility in pathways and starting material beyond those that are documented. This work starts by replicating known pathways to corrosion inhibitors from a single bioprivileged candidate molecule and applying the constituent reaction families to the entirety of the reactant pool and concludes by generating networks with a more extensive reaction family list and two sets of co-reactants, or “helper molecules”. Network size, both from the perspective of total reactions enacted and total products formed, was analyzed.</p>\",\"PeriodicalId\":91,\"journal\":{\"name\":\"Molecular Systems Design & Engineering\",\"volume\":\" 4\",\"pages\":\" 352-371\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Systems Design & Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/me/d3me00162h\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Systems Design & Engineering","FirstCategoryId":"5","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/me/d3me00162h","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Application of automated network generation for retrosynthetic planning of potential corrosion inhibitors†
Retrosynthesis is the process of designing chemical pathways from a set of reactants to a set of desired products. However, when both the pools of potential reactants and products grow to a substantial size, this becomes infeasible without the aid of computational tools. This work uses Pickaxe, an automated network generation tool, to perform computational retrosynthesis on a pool of 297 bioprivileged candidate molecules as reactants and 44 003 potential corrosion inhibitors that were generated by a variational autoencoder. Unlike typical approaches in computational synthesis planning, the use of automated network generation allows flexibility in pathways and starting material beyond those that are documented. This work starts by replicating known pathways to corrosion inhibitors from a single bioprivileged candidate molecule and applying the constituent reaction families to the entirety of the reactant pool and concludes by generating networks with a more extensive reaction family list and two sets of co-reactants, or “helper molecules”. Network size, both from the perspective of total reactions enacted and total products formed, was analyzed.
期刊介绍:
Molecular Systems Design & Engineering provides a hub for cutting-edge research into how understanding of molecular properties, behaviour and interactions can be used to design and assemble better materials, systems, and processes to achieve specific functions. These may have applications of technological significance and help address global challenges.