通过埃奇沃斯扩展修正点功率变化估计器

IF 0.9 4区 数学 Q3 STATISTICS & PROBABILITY
Metrika Pub Date : 2023-12-18 DOI:10.1007/s00184-023-00935-z
Lidan He, Qiang Liu, Zhi Liu, Andrea Bucci
{"title":"通过埃奇沃斯扩展修正点功率变化估计器","authors":"Lidan He, Qiang Liu, Zhi Liu, Andrea Bucci","doi":"10.1007/s00184-023-00935-z","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we propose an estimator of power spot volatility of order p through Edgeworth expansion. We provide a precise description of how to compute the expansion and the first four cumulants are given in an explicit form. We also construct feasible confidence intervals (one-sided and two-sided) for the pth power spot volatility estimator by using Edgeworth expansion. A Monte Carlo simulation study shows that the confidence intervals and probability density curve based on Edgeworth expansion perform better than the conventional case based on Normal approximation.\n</p>","PeriodicalId":49821,"journal":{"name":"Metrika","volume":"242 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Correcting spot power variation estimator via Edgeworth expansion\",\"authors\":\"Lidan He, Qiang Liu, Zhi Liu, Andrea Bucci\",\"doi\":\"10.1007/s00184-023-00935-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we propose an estimator of power spot volatility of order p through Edgeworth expansion. We provide a precise description of how to compute the expansion and the first four cumulants are given in an explicit form. We also construct feasible confidence intervals (one-sided and two-sided) for the pth power spot volatility estimator by using Edgeworth expansion. A Monte Carlo simulation study shows that the confidence intervals and probability density curve based on Edgeworth expansion perform better than the conventional case based on Normal approximation.\\n</p>\",\"PeriodicalId\":49821,\"journal\":{\"name\":\"Metrika\",\"volume\":\"242 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metrika\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00184-023-00935-z\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metrika","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00184-023-00935-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种通过埃奇沃斯扩展估算 p 阶幂级数现货波动率的方法。我们提供了如何计算扩展的精确描述,并以明确的形式给出了前四个累积量。我们还利用埃奇沃斯扩展为 pth 幂现货波动率估计值构建了可行的置信区间(单边和双边)。蒙特卡罗模拟研究表明,基于埃奇沃斯扩展的置信区间和概率密度曲线比基于正态近似的传统情况表现更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Correcting spot power variation estimator via Edgeworth expansion

Correcting spot power variation estimator via Edgeworth expansion

In this paper, we propose an estimator of power spot volatility of order p through Edgeworth expansion. We provide a precise description of how to compute the expansion and the first four cumulants are given in an explicit form. We also construct feasible confidence intervals (one-sided and two-sided) for the pth power spot volatility estimator by using Edgeworth expansion. A Monte Carlo simulation study shows that the confidence intervals and probability density curve based on Edgeworth expansion perform better than the conventional case based on Normal approximation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Metrika
Metrika 数学-统计学与概率论
CiteScore
1.50
自引率
14.30%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Metrika is an international journal for theoretical and applied statistics. Metrika publishes original research papers in the field of mathematical statistics and statistical methods. Great importance is attached to new developments in theoretical statistics, statistical modeling and to actual innovative applicability of the proposed statistical methods and results. Topics of interest include, without being limited to, multivariate analysis, high dimensional statistics and nonparametric statistics; categorical data analysis and latent variable models; reliability, lifetime data analysis and statistics in engineering sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信