单位球上 $$p$$ 阿迪克菲茨休-纳古莫系统中的图灵模式

IF 0.5 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
L. F. Chacón-Cortés, C. A. Garcia-Bibiano, W. A. Zúñiga-Galindo
{"title":"单位球上 $$p$$ 阿迪克菲茨休-纳古莫系统中的图灵模式","authors":"L. F. Chacón-Cortés, C. A. Garcia-Bibiano, W. A. Zúñiga-Galindo","doi":"10.1134/s2070046623040015","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> We introduce discrete and <span>\\(p\\)</span>-adic continuous versions of the FitzHugh-Nagumo system on the one-dimensional <span>\\(p\\)</span>-adic unit ball. We provide criteria for the existence of Turing patterns. We present extensive simulations of some of these systems. The simulations show that the Turing patterns are traveling waves in the <span>\\(p\\)</span>-adic unit ball. </p>","PeriodicalId":44654,"journal":{"name":"P-Adic Numbers Ultrametric Analysis and Applications","volume":"208 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Turing Patterns in a $$p$$ -Adic FitzHugh-Nagumo System on the Unit Ball\",\"authors\":\"L. F. Chacón-Cortés, C. A. Garcia-Bibiano, W. A. Zúñiga-Galindo\",\"doi\":\"10.1134/s2070046623040015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p> We introduce discrete and <span>\\\\(p\\\\)</span>-adic continuous versions of the FitzHugh-Nagumo system on the one-dimensional <span>\\\\(p\\\\)</span>-adic unit ball. We provide criteria for the existence of Turing patterns. We present extensive simulations of some of these systems. The simulations show that the Turing patterns are traveling waves in the <span>\\\\(p\\\\)</span>-adic unit ball. </p>\",\"PeriodicalId\":44654,\"journal\":{\"name\":\"P-Adic Numbers Ultrametric Analysis and Applications\",\"volume\":\"208 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"P-Adic Numbers Ultrametric Analysis and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1134/s2070046623040015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"P-Adic Numbers Ultrametric Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1134/s2070046623040015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

Abstract 我们介绍了一维单位球上的离散和(p)-adic连续版本的FitzHugh-Nagumo系统。我们提供了图灵模式存在的标准。我们对其中一些系统进行了大量模拟。模拟结果表明,图灵模式是 \(p\)-adic 单位球中的行波。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Turing Patterns in a $$p$$ -Adic FitzHugh-Nagumo System on the Unit Ball

Turing Patterns in a $$p$$ -Adic FitzHugh-Nagumo System on the Unit Ball

Abstract

We introduce discrete and \(p\)-adic continuous versions of the FitzHugh-Nagumo system on the one-dimensional \(p\)-adic unit ball. We provide criteria for the existence of Turing patterns. We present extensive simulations of some of these systems. The simulations show that the Turing patterns are traveling waves in the \(p\)-adic unit ball.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
P-Adic Numbers Ultrametric Analysis and Applications
P-Adic Numbers Ultrametric Analysis and Applications MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
CiteScore
1.10
自引率
20.00%
发文量
16
期刊介绍: This is a new international interdisciplinary journal which contains original articles, short communications, and reviews on progress in various areas of pure and applied mathematics related with p-adic, adelic and ultrametric methods, including: mathematical physics, quantum theory, string theory, cosmology, nanoscience, life sciences; mathematical analysis, number theory, algebraic geometry, non-Archimedean and non-commutative geometry, theory of finite fields and rings, representation theory, functional analysis and graph theory; classical and quantum information, computer science, cryptography, image analysis, cognitive models, neural networks and bioinformatics; complex systems, dynamical systems, stochastic processes, hierarchy structures, modeling, control theory, economics and sociology; mesoscopic and nano systems, disordered and chaotic systems, spin glasses, macromolecules, molecular dynamics, biopolymers, genomics and biology; and other related fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信