{"title":"一些巢代数的 2 局部等距","authors":"BO YU, JIANKUI LI","doi":"10.1017/s000497272300117x","DOIUrl":null,"url":null,"abstract":"<p>Let <span>H</span> be a complex separable Hilbert space with <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231216090148228-0567:S000497272300117X:S000497272300117X_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$\\dim H \\geq 2$</span></span></img></span></span>. Let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231216090148228-0567:S000497272300117X:S000497272300117X_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathcal {N}$</span></span></img></span></span> be a nest on <span>H</span> such that <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231216090148228-0567:S000497272300117X:S000497272300117X_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$E_+ \\neq E$</span></span></img></span></span> for any <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231216090148228-0567:S000497272300117X:S000497272300117X_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$E \\neq H, E \\in \\mathcal {N}$</span></span></img></span></span>. We prove that every 2-local isometry of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231216090148228-0567:S000497272300117X:S000497272300117X_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$\\operatorname {Alg}\\mathcal {N}$</span></span></img></span></span> is a surjective linear isometry.</p>","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"2-LOCAL ISOMETRIES OF SOME NEST ALGEBRAS\",\"authors\":\"BO YU, JIANKUI LI\",\"doi\":\"10.1017/s000497272300117x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span>H</span> be a complex separable Hilbert space with <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231216090148228-0567:S000497272300117X:S000497272300117X_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\dim H \\\\geq 2$</span></span></img></span></span>. Let <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231216090148228-0567:S000497272300117X:S000497272300117X_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathcal {N}$</span></span></img></span></span> be a nest on <span>H</span> such that <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231216090148228-0567:S000497272300117X:S000497272300117X_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$E_+ \\\\neq E$</span></span></img></span></span> for any <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231216090148228-0567:S000497272300117X:S000497272300117X_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$E \\\\neq H, E \\\\in \\\\mathcal {N}$</span></span></img></span></span>. We prove that every 2-local isometry of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231216090148228-0567:S000497272300117X:S000497272300117X_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\operatorname {Alg}\\\\mathcal {N}$</span></span></img></span></span> is a surjective linear isometry.</p>\",\"PeriodicalId\":50720,\"journal\":{\"name\":\"Bulletin of the Australian Mathematical Society\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Australian Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s000497272300117x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s000497272300117x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
让 H 是一个复杂的可分离的希尔伯特空间,其中有 $\dim H \geq 2$。让 $mathcal {N}$ 是 H 上的一个巢,对于任意 $E \neq H, E \in \mathcal {N}$ 来说,$E_+ \neq E$ 是这样的。我们证明 $\operatorname {Alg}\mathcal {N}$ 的每一个 2 局部等势都是投射线性等势。
Let H be a complex separable Hilbert space with $\dim H \geq 2$. Let $\mathcal {N}$ be a nest on H such that $E_+ \neq E$ for any $E \neq H, E \in \mathcal {N}$. We prove that every 2-local isometry of $\operatorname {Alg}\mathcal {N}$ is a surjective linear isometry.
期刊介绍:
Bulletin of the Australian Mathematical Society aims at quick publication of original research in all branches of mathematics. Papers are accepted only after peer review but editorial decisions on acceptance or otherwise are taken quickly, normally within a month of receipt of the paper. The Bulletin concentrates on presenting new and interesting results in a clear and attractive way.
Published Bi-monthly
Published for the Australian Mathematical Society