{"title":"通过加速养护和废料整合提高加气混凝土的性能","authors":"Pradyut Anand, Anand Kr Sinha, Puja Rajhans","doi":"10.1680/jadcr.23.00150","DOIUrl":null,"url":null,"abstract":"This article discusses the mechanical and durability properties of aerated blocks. In present study, aerated blocks prepared by using different cementitious materials along with the alkaline solution (AS) in the absence of aluminium powder. The proportions of raw materials are chosen after performing two mix trials P1 and P2, keeping the density of blocks constant i.e., 800 kg/m<sup>3</sup>. Each mix is further tested under six curing mechanisms, viz, normal water curing, humidity chamber curing at (50°C and 70% relative humidity) for 6 hours and 10 hours, oven drying curing at 180°C for 6 hours and at 80℃ for 24 hours and using accelerated curing (ACT) at 65°C±5°C for 10±2 hours and named as trial “1”. In trial “2” the best curing mechanism is taken and construction and demolition waste are substituted at different proportions in place of flyash in both the mix proportions. Further, trial “3” is investigated on the best mix proportion by substituting glass powder at 50% and 100% with flyash and CDW, respectively. It is observed from experiments that aerated blocks manufactured with 50% CDW and heat curing done in the ACT showed high mechanical and durability properties after 7 days of hardening.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing the performance of aerated concrete through accelerated curing and waste material integration\",\"authors\":\"Pradyut Anand, Anand Kr Sinha, Puja Rajhans\",\"doi\":\"10.1680/jadcr.23.00150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article discusses the mechanical and durability properties of aerated blocks. In present study, aerated blocks prepared by using different cementitious materials along with the alkaline solution (AS) in the absence of aluminium powder. The proportions of raw materials are chosen after performing two mix trials P1 and P2, keeping the density of blocks constant i.e., 800 kg/m<sup>3</sup>. Each mix is further tested under six curing mechanisms, viz, normal water curing, humidity chamber curing at (50°C and 70% relative humidity) for 6 hours and 10 hours, oven drying curing at 180°C for 6 hours and at 80℃ for 24 hours and using accelerated curing (ACT) at 65°C±5°C for 10±2 hours and named as trial “1”. In trial “2” the best curing mechanism is taken and construction and demolition waste are substituted at different proportions in place of flyash in both the mix proportions. Further, trial “3” is investigated on the best mix proportion by substituting glass powder at 50% and 100% with flyash and CDW, respectively. It is observed from experiments that aerated blocks manufactured with 50% CDW and heat curing done in the ACT showed high mechanical and durability properties after 7 days of hardening.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1680/jadcr.23.00150\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1680/jadcr.23.00150","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Enhancing the performance of aerated concrete through accelerated curing and waste material integration
This article discusses the mechanical and durability properties of aerated blocks. In present study, aerated blocks prepared by using different cementitious materials along with the alkaline solution (AS) in the absence of aluminium powder. The proportions of raw materials are chosen after performing two mix trials P1 and P2, keeping the density of blocks constant i.e., 800 kg/m3. Each mix is further tested under six curing mechanisms, viz, normal water curing, humidity chamber curing at (50°C and 70% relative humidity) for 6 hours and 10 hours, oven drying curing at 180°C for 6 hours and at 80℃ for 24 hours and using accelerated curing (ACT) at 65°C±5°C for 10±2 hours and named as trial “1”. In trial “2” the best curing mechanism is taken and construction and demolition waste are substituted at different proportions in place of flyash in both the mix proportions. Further, trial “3” is investigated on the best mix proportion by substituting glass powder at 50% and 100% with flyash and CDW, respectively. It is observed from experiments that aerated blocks manufactured with 50% CDW and heat curing done in the ACT showed high mechanical and durability properties after 7 days of hardening.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.