用于预测中国石油和天然气消费量的稳健叠加模型

IF 3.9 4区 工程技术 Q2 Chemical Engineering
Yali Hou, Qunwei Wang, Tao Tan
{"title":"用于预测中国石油和天然气消费量的稳健叠加模型","authors":"Yali Hou, Qunwei Wang, Tao Tan","doi":"10.1080/15567249.2023.2292235","DOIUrl":null,"url":null,"abstract":"Accurate prediction of oil and natural gas consumption (ONGC) is crucial for energy security and greenhouse gas emission control. This study uses machine learning to improve forecast accuracy by tr...","PeriodicalId":50527,"journal":{"name":"Energy Sources Part B-Economics Planning and Policy","volume":"125 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A robust stacking model for predicting oil and natural gas consumption in China\",\"authors\":\"Yali Hou, Qunwei Wang, Tao Tan\",\"doi\":\"10.1080/15567249.2023.2292235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate prediction of oil and natural gas consumption (ONGC) is crucial for energy security and greenhouse gas emission control. This study uses machine learning to improve forecast accuracy by tr...\",\"PeriodicalId\":50527,\"journal\":{\"name\":\"Energy Sources Part B-Economics Planning and Policy\",\"volume\":\"125 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Sources Part B-Economics Planning and Policy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/15567249.2023.2292235\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Sources Part B-Economics Planning and Policy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15567249.2023.2292235","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

摘要

准确预测石油和天然气消耗量(ONGC)对于能源安全和温室气体排放控制至关重要。本研究利用机器学习提高预测的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A robust stacking model for predicting oil and natural gas consumption in China
Accurate prediction of oil and natural gas consumption (ONGC) is crucial for energy security and greenhouse gas emission control. This study uses machine learning to improve forecast accuracy by tr...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.30
自引率
12.80%
发文量
42
审稿时长
1 months
期刊介绍: 12 issues per year Abstracted and/or indexed in: Applied Science & Technology Index; API Abstracts/Literature; Automatic Subject Index Citation; BIOSIS Previews; Cabell’s Directory of Publishing Opportunities in Economics and Finance; Chemical Abstracts; CSA Aquatic Science & Fisheries Abstracts; CSA Environmental Sciences & Pollution Management Database; CSA Pollution Abstracts; Current Contents/Engineering, Technology & Applied Sciences; Directory of Industry Data Sources; Economic Abstracts; Electrical and Electronics Abstracts; Energy Information Abstracts; Energy Research Abstracts; Engineering Index Monthly; Environmental Abstracts; Environmental Periodicals Bibliography (EPB); International Abstracts in Operations Research; Operations/Research/Management Science Abstracts; Petroleum Abstracts; Physikalische Berichte; and Science Citation Index. Taylor & Francis make every effort to ensure the accuracy of all the information (the "Content") contained in our publications. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor & Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to, or arising out of the use of the Content. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信