{"title":"低场 MR-Linac 的 MRgRT 质量保证","authors":"Joshua P. Kim","doi":"10.1016/j.semradonc.2023.10.012","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>The introduction of MR-guided treatment machines into the </span>radiation oncology clinic has provided unique challenges for the </span>radiotherapy<span> QA program. These MR-linac systems require that existing QA procedures be adapted to verify linac performance within the magnetic field environment and that new procedures be added to ensure acceptable image quality for the MR system. While both high and low-field MR-linac options exist, this chapter is intended to provide a structure for implementing a QA program within the low-field MR environment. This review is divided into three sections. The first section focuses on machine QA tasks including mechanical and dosimetric verification. The second section is concentrated on the procedures implemented for imaging QA. Finally, the last section covers patient specific QA tasks including special considerations related to the performance of patient specific QA within the framework of online adaptive radiotherapy.</span></p></div>","PeriodicalId":49542,"journal":{"name":"Seminars in Radiation Oncology","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MRgRT Quality Assurance for a Low-Field MR-Linac\",\"authors\":\"Joshua P. Kim\",\"doi\":\"10.1016/j.semradonc.2023.10.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>The introduction of MR-guided treatment machines into the </span>radiation oncology clinic has provided unique challenges for the </span>radiotherapy<span> QA program. These MR-linac systems require that existing QA procedures be adapted to verify linac performance within the magnetic field environment and that new procedures be added to ensure acceptable image quality for the MR system. While both high and low-field MR-linac options exist, this chapter is intended to provide a structure for implementing a QA program within the low-field MR environment. This review is divided into three sections. The first section focuses on machine QA tasks including mechanical and dosimetric verification. The second section is concentrated on the procedures implemented for imaging QA. Finally, the last section covers patient specific QA tasks including special considerations related to the performance of patient specific QA within the framework of online adaptive radiotherapy.</span></p></div>\",\"PeriodicalId\":49542,\"journal\":{\"name\":\"Seminars in Radiation Oncology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seminars in Radiation Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S105342962300067X\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seminars in Radiation Oncology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S105342962300067X","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
The introduction of MR-guided treatment machines into the radiation oncology clinic has provided unique challenges for the radiotherapy QA program. These MR-linac systems require that existing QA procedures be adapted to verify linac performance within the magnetic field environment and that new procedures be added to ensure acceptable image quality for the MR system. While both high and low-field MR-linac options exist, this chapter is intended to provide a structure for implementing a QA program within the low-field MR environment. This review is divided into three sections. The first section focuses on machine QA tasks including mechanical and dosimetric verification. The second section is concentrated on the procedures implemented for imaging QA. Finally, the last section covers patient specific QA tasks including special considerations related to the performance of patient specific QA within the framework of online adaptive radiotherapy.
期刊介绍:
Each issue of Seminars in Radiation Oncology is compiled by a guest editor to address a specific topic in the specialty, presenting definitive information on areas of rapid change and development. A significant number of articles report new scientific information. Topics covered include tumor biology, diagnosis, medical and surgical management of the patient, and new technologies.